Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing
نویسندگان
چکیده
Graphene is a two-dimensional network in which sp(2)-hybridized carbon atoms are arranged in two different triangular sub-lattices (A and B). By incorporating nitrogen atoms into graphene, its physico-chemical properties could be significantly altered depending on the doping configuration within the sub-lattices. Here, we describe the synthesis of large-area, highly-crystalline monolayer N-doped graphene (NG) sheets via atmospheric-pressure chemical vapor deposition, yielding a unique N-doping site composed of two quasi-adjacent substitutional nitrogen atoms within the same graphene sub-lattice (N(2)(AA)). Scanning tunneling microscopy and spectroscopy (STM and STS) of NG revealed the presence of localized states in the conduction band induced by N(2)(AA)-doping, which was confirmed by ab initio calculations. Furthermore, we demonstrated for the first time that NG could be used to efficiently probe organic molecules via a highly improved graphene enhanced Raman scattering.
منابع مشابه
Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering
As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open q...
متن کاملInvestigation of N-doped Graphene as an Absorbent for some Gases: A DFT Study
At the present theoretical study, DFT calculations were performed for elucidating thereaction, absorption energy and the quantum molecular descriptors including electronic chemical potential, chemical hardness, Homo, Lumo, band gap energy (Eg) and finding the most active nitrogen-doped graphene sheet (N-G) for absorption H2S, CH4, N2 and CO2 gases. Finally it found that nitrogen-doped gra...
متن کاملChemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situati...
متن کاملOne-Pot Microbial Method to Synthesize Dual-Doped Graphene and Its Use as High-Performance Electrocatalyst
A novel strategy to synthesize nitrogen (N) and sulfur (S)-doped graphene (G) is developed through sulfate-reducing bacteria treating graphene oxide (GO). The N, S-doped G demonstrates significantly improved electrocatalytic properties and electrochemical sensing performances in comparison with single-doped graphene due to the synergistic effects of dual dopants on the properties of graphene.
متن کاملA comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.
SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison betw...
متن کامل