Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries

نویسندگان

  • Laifa Shen
  • Guozhong Cao
چکیده

A mesoporous Li 4 Ti 5 O 12 /C nanocomposite is synthesized by a nanocasting technique using the porous carbon material CMK-3 as a hard template. Modifi ed CMK-3 template is impregnated with Li 4 Ti 5 O 12 precursor, followed by heat treatment at 750 ° C for 6 h under N 2 . Li 4 Ti 5 O 12 nanocrystals of up to several tens of nanometers are successfully synthesized in micrometer-sized porous carbon foam to form a highly conductive network, as confi rmed by fi eld emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and nitrogen sorption isotherms. The composite is then evaluated as an anode material for lithium ion batteries. It exhibits greatly improved electrochemical performance compared with bulk Li 4 Ti 5 O 12 , and shows an excellent rate capability (73.4 mA h g − 1 at 80 C) with signifi cantly enhanced cycling performance (only 5.6% capacity loss after 1000 cycles at a high rate of 20 C). The greatly enhanced lithium storage properties of the mesoporous Li 4 Ti 5 O 12 /C nanocomposite may be attributed to the interpenetrating conductive carbon network, ordered mesoporous structure, and the small Li 4 Ti 5 O 12 nanocrystallites that increase the ionic and electronic conduction throughout the electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries.

Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers (Li4Ti5O12@C hierarchical nanofibers) were synthesized using a scalable synthesis technique involving electrospinning and annealing in an Ar atmosphere for the purpose of using them as anode materials for high-capacity and high-rate-capability Li-ion and Na-ion batteries. The Li4Ti5O12@C hierarchical nanofibers exhibited high stable dis...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties.

Mesoporous, micro/nanosized TiO2/C composites with uniformly dispersed TiO2 nanoparticles embedded in a carbon matrix have been rationally designed and synthesized. In brief, TiO2 precursor was infiltrated into the channels of surface-oxidized mesoporous carbon (CMK-3) by means of electrostatic interaction, followed by in situ hydrolysis and growth of TiO2 nanocrystallites, resulting in ultrafi...

متن کامل

Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker age...

متن کامل

Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries

Three-dimensional self-supported cathode nanoarchitectures are the key to develop high-performance thin film lithium-ion microbatteries and flexible lithium-ion batteries. In this work, we have developed a facile “hydrothermal lithiation” strategy to prepare vertically aligned porous LiMn2O4 nanowall arrays, comprising highly crystallized spinel nanoparticles, on various conductive substrates w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012