Modulation of IK,Ca by phorbol ester-mediated activation of PKC in pleural sensory neurons of Aplysia.
نویسندگان
چکیده
1. The electrophysiological properties of the sensory neurons that mediate withdrawal reflexes in Aplysia are modulated by a number of second messengers. For example, the second messengers adenosine 3',5'-cyclic monophosphate (cAMP) and arachidonic acid modulate the S-K+ current (IK,S) and the calcium-activated K+ current (IK,Ca). Recent evidence suggests that protein kinase C (PKC) may also be an important regulator of cellular plasticity. In the present study we examined the possibility that IK,Ca was modulated by the activation of PKC in the pleural sensory neurons. 2. In voltage-clamped sensory neurons the application of phorbol esters, such as phorbol dibutyrate (PDBu), phorbol myristate (PMA), and phorbol diacetate (PDAc), which activate PKC, caused a dose-dependent increase in a voltage-dependent current with properties that resembled IK,Ca. The inactive isomer of phorbol ester, 4 alpha-phorbol, was without effect. 3. This phorbol ester-sensitive current had the kinetics and pharmacological sensitivity of IK,Ca. The current developed slowly during step depolarizations, showed little inactivation, and was activated at membrane potentials greater than approximately 0 mV. In addition, the current modulated by phorbol esters was blocked by a concentration of tetraethylammonium (TEA) that blocks a component of IK,Ca in the sensory neurons. 4. IK,Ca, which was activated directly by the iontophoretic injection of Ca2+, was also enhanced by PDBu. Moreover, the enhancement of Ca(2+)-elicited responses by PDBu persisted after Ca2+ influx was blocked by cobalt. These results indicate that at least one component of the modulation of IK,Ca by PDBu was independent of the modulation of voltage-dependent Ca2+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Activators of protein kinase C mimic serotonin-induced modulation of a voltage-dependent potassium current in pleural sensory neurons of Aplysia.
1. In the pleural mechanoafferent sensory neurons of Aplysia, serotonin (5-HT)-induced spike broadening consists of at least two components: a cAMP and protein kinase A (PKA)-dependent, rapidly developing component and a protein kinase C (PKC)-dependent, slowly developing component. Voltage-clamp experiments were conducted to identify currents that are modulated by PKC and thus may contribute t...
متن کاملCa-Independent Protein Kinase C Apl II Mediates the Serotonin- Induced Facilitation at Depressed Aplysia Sensorimotor Synapses
At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC isoforms, the Ca-dependent PKC Apl I ...
متن کاملComputational model of the serotonergic modulation of sensory neurons in Aplysia.
Serotonergic modulation of the sensory neurons that mediate the gill- and tail-withdrawal reflexes of Aplysia is a useful model system for studies of neuronal plasticity that contributes to learning and memory. The effects of serotonin (5-HT) are mediated, in part, via two protein kinases (protein kinase A, PKA, and protein kinase C, PKC), which in turn, modulate at least four membrane currents...
متن کاملCa2+-independent protein kinase C Apl II mediates the serotonin-induced facilitation at depressed aplysia sensorimotor synapses.
At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC isoforms, the Ca(2+)-dependent PKC Ap...
متن کاملDecline in the Recovery from Synaptic Depression in Heavier Aplysia Results from Decreased Serotonin-Induced Novel PKC Activation
The defensive withdrawal reflexes of Aplysia are important behaviors for protecting the animal from predation. Habituation and dishabituation allow for experience-dependent tuning of these reflexes and the mechanisms underlying these forms of behavioral plasticity involve changes in transmitter release from the sensory to motor neuron synapses through homosynaptic depression and the serotonin-m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 68 4 شماره
صفحات -
تاریخ انتشار 1992