Reflected Spectrally Negative Stable Processes and Their Governing Equations

نویسندگان

  • BORIS BAEUMER
  • MIHÁLY KOVÁCS
  • MARK M. MEERSCHAERT
چکیده

This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fractional reflecting boundary condition at the origin. Then we apply numerical methods to explicitly compute the transition density of this space-inhomogeneous Markov process, for any starting point, to any desired degree of accuracy. Finally, we discuss an application to fractional Cauchy problems, which involve a positive Caputo fractional derivative in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Old and new examples of scale functions for spectrally negative Lévy processes

We give a review of the state of the art with regard to the theory of scale functions for spectrally negative Lévy processes. From this we introduce a general method for generating new families of scale functions. Using this method we introduce a new family of scale functions belonging to the Gaussian Tempered Stable Convolution (GTSC) class. We give particular emphasis to special cases as well...

متن کامل

Spectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation

  In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Infinitely Divisibility of Solutions of Some Semi-stable Integro-differential Equations and Exponential Functionals of Lévy Processes

0 (1 ∧ x2) ν(dx) < +∞, are uniquely determined by the distribution of a spectrally negative infinitely divisible random variable, with characteristic exponent ψ. L(α,ψ,γ) is known to be the infinitesimal generator of a 1 α -semi-stable Feller semigroup on R+, which has been introduced by Lamperti [18]. The functions are expressed in terms of a new family of power series which includes, for inst...

متن کامل

Spectrally Stable Encapsulated Vortices for Nonlinear Schrödinger Equations

A large class of multidimensional nonlinear Schrödinger equations admit localized nonradial standing wave solutions that carry nonzero intrinsic angular momentum. Here we provide evidence that certain of these spinning excitations are spectrally stable. We find such waves for equations in two space dimensions with focusing-defocusing nonlinearities, such as cubic-quintic. Spectrally stable wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015