On Parameter Adjustment of the Immune Inspired Machine Learning Algorithm AINE
نویسنده
چکیده
A machine-learning algorithm based on the natural immune system metaphor has been developed, AINE (Artificial Immune Network). AINE developed from initial work on Artificial Immune Systems for data analysis, for which detailed experimentation was undertaken as to the affect of altering algorithm parameters had on the behaviour of the system. Two of the parameters, the network affinity threshold and mutation rate have been carried over into the new version, AINE. A third parameter the number of resources has been introduced into AINE as a means by which to control network size and create a stable network structure.
منابع مشابه
aiVIS – Artificial Immune Network Visualisation
The field of Artificial Immune Systems (AIS) is the use of the natural immune system as a metaphor for solving computational problems. A novel unsupervised machine-learning algorithm, inspired by the immune system, has been developed called AINE. Using various immunological metaphors, AINE evolves a network of objects, known as an Artificial Immune Network (AIN) that is a diverse representation...
متن کاملPattern Recognition using Artificial Immune System
In this thesis, the uses of Artificial Immune Systems (AIS) in Machine learning is studded. the thesis focus on some of immune inspired algorithms such as clonal selection algorithm and artificial immune network. The effect of changing the algorithm parameter on its performance is studded. Then a new immune inspired algorithm for unsupervised classification is proposed. The new algorithm is bas...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کامل