Microdosimetric calculation of absorption fraction and the resulting dose conversion factor for radon progeny.
نویسندگان
چکیده
It is an established fact that radon progeny can induce lung cancers. However, there is a well-known discrepancy between the epidemiologically derived dose conversion factor for radon progeny (4 mSv/WLM) and the dosimetrically derived value (15 mSv/WLM) (mSv is a unit of the dose while WLM is a unit of exposure to radon progeny). Up to now there is no satisfactory explanation to this. In the present study we propose that microdosimetry will help reduce the discrepancy significantly. The ICRP Human Respiratory Tract Model (HRTM) has been applied to calculate the effective dose conversion factor. All parameters have been kept at their best estimates. Modifications were made in the calculation of the absorbed fractions of alpha particles. In contrast to the ICRP approach where the energy has been considered to be deposited in the layer containing the sensitive cells, we used a microdosimetric approach in which the alpha particles deposit their energy only in the nuclei of sensitive cells. This modification alone has lowered the dose conversion factor by about one-third (from 15 mSv/WLM down to approximately 10 mSv/WLM).
منابع مشابه
Calculating CR-39 Response to Radon in Water Using Monte Carlo Simulation
Introduction CR-39 detectors are widely used for Radon and progeny measurement in the air. In this paper, using the Monte Carlo simulation, the possibility of using the CR-39 for direct measurement of Radon and progeny in water is investigated. Materials and Methods Assuming the random position and angle of alpha particle emitted by Radon and progeny, alpha energy and angular spectrum that arri...
متن کاملDose estimation and radon action level problems due to nanosize radon progeny aerosols in underground manganese ore mine.
One of the essential parameters influencing of the dose conversion factor is the ratio of unattached short-lived radon progeny. This may differ from the value identified for indoor conditions when considering special workplaces such as mines. Inevitably, application of the dose conversion factors used in surface workplaces considerably reduces the reliability of dose estimation in the case of m...
متن کاملKilling of target cells due to radon progeny in the human lung.
The dose conversion coefficient (DCC) is used to assess the risk due to inhaled radon progeny in the human lung. The present work uses the microdosimetric approach and determines the linear energy transfer in the target cell nuclei. Killing of target cells was also taken into account through an effect-specific track length model. To focus on the relevant part of the absorbed dose in the cell nu...
متن کاملActivity of Ultrafine Fraction of Radon Progeny in Indoor Air
Inhalation of Rn progeny has been recognized as a health risk, primarily as a cause of human lung cancer. Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about 10 percent of the total activity (attached and ultrafine), but is considered to yield about 50 percent of the...
متن کاملField calibration of the glass-based retrospective radon detectors for epidemiologic applications
The primary goal of this PhD research was to obtain critical information needed to further calibrate the novel glass-based retrospective radon detectors (RRDs) by characterizing the quantitative relationship between radon gas concentrations, the surface-deposited activities of various radon progeny, the airborne dose rate, and various residential environmental factors through both actual field ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation and environmental biophysics
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2001