Numerical Local Irreducible Decomposition

نویسندگان

  • Daniel A. Brake
  • Jonathan D. Hauenstein
  • Andrew J. Sommese
چکیده

Globally, the solution set of a system of polynomial equations with complex coefficients can be decomposed into irreducible components. Using numerical algebraic geometry, each irreducible component is represented using a witness set thereby yielding a numerical irreducible decomposition of the solution set. Locally, the irreducible decomposition can be refined to produce a local irreducible decomposition. We define local witness sets and describe a numerical algebraic geometric approach for computing a numerical local irreducible decomposition for polynomial systems. Several examples are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Local Dimension Test for Points on the Solution Set of a System of Polynomial Equations

The solution set V of a polynomial system, i.e., the set of common zeroes of a set of multivariate polynomials with complex coefficients, may contain several components, e.g., points, curves, surfaces, etc. Each component has attached to it a number of quantities, one of which is its dimension. Given a numerical approximation to a point p on the set V , this article presents an efficient algori...

متن کامل

A Local Dimension Test for Numerically Approximated Points on Algebraic Sets

Given a numerical approximation to a point p on the set V of common zeroes of a set of multivariate polynomials with complex coefficients, this article presents an efficient method to compute the maximum dimension of the irreducible components of V which pass through p, i.e., a local dimension test. Such a test, used to filter out the so-called “junk points,” is a crucial element in the numeric...

متن کامل

Decomposing Solution Sets of Polynomial Systems Using Derivatives

A core computation in numerical algebraic geometry is the decomposition of the solution set of a system of polynomial equations into irreducible components, called the numerical irreducible decomposition. One approach to validate a decomposition is what has come to be known as the “trace test.” This test, described by Sommese, Verschelde, and Wampler in 2002, relies upon path tracking and hence...

متن کامل

Numerically intersecting algebraic varieties via witness sets

The fundamental construct of numerical algebraic geometry is the representation of an irreducible algebraic set, A, by a witness set, which consists of a polynomial system, F , for which A is an irreducible component of V(F ), a generic linear space L of complementary dimension to A, and a numerical approximation to the set of witness points, L ∩A. Given F , methods exist for computing a numeri...

متن کامل

Decomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal

Let $f : A rightarrow B$ be a ring homomorphism and $J$ an ideal of $B$. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $Abowtie^fJ$ to be $J$-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $Abowtie^fJ$, in special cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015