Calmodulin Dissociation Mediates Desensitization of the cADPR-Induced Ca2+ Release Mechanism

نویسندگان

  • Justyn M. Thomas
  • Robin J. Summerhill
  • Bradley R. Fruen
  • Grant C. Churchill
  • Antony Galione
چکیده

Ryanodine receptor (RyR) activation by cyclic ADP-ribose (cADPR) is followed by homologous desensitization. Though poorly understood, this "switching off" process has provided a key experimental tool for determining the pathway through which cADPR mediates Ca(2+) release. Moreover, desensitization is likely to play an important role in shaping the complexities of Ca(2+) signaling involving cADPR, for example, localized release events and propagated waves. Using the sea urchin egg, we unmask a role of calmodulin, a component of the RyR complex and a key cofactor for cADPR activity, during RyR/cADPR desensitization. Recovery from desensitization in calmodulin-depleted purified endoplasmic reticulum (microsomes) is severely impaired compared to that in crude egg homogenates. An active, soluble factor, identified as calmodulin, is required to restore the capacity of microsomes to recover from desensitization. Calmodulin mediates recovery in a manner that tightly parallels its time course of association with the RyR. Conversely, direct measurement of calmodulin binding to microsomes reveals a loss of specific binding during cADPR, but not IP(3), desensitization. Our results support a mechanism in which cycles of calmodulin dissociation and reassociation to an endoplasmic reticulum protein, most likely the RyR itself, mediate RyR/cADPR desensitization and resensitization, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin is a selective mediator of Ca 2 + - induced Ca 2 + release via the ryanodine receptor - like Ca 21 channel triggered by cyclic

The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca2+-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have ident...

متن کامل

Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries.

Cyclic-ADP-ribose (cADPR) has been reported to serve as a second messenger to mobilize intracellular Ca2+ independent of IP3 in a variety of mammalian cells. This cADPR-mediated Ca2+ signaling pathway importantly participates in the regulation of various cell functions. The present study determined the role of endogenous cADPR in mediating ryanodine-sensitive Ca2+-induced Ca2+ release (CICR) in...

متن کامل

Cyclic ADP-ribose-gated Ca2+ release in sea urchin eggs requires an elevated.

Cyclic ADP-ribose (cADPr) has been shown to release intracellular Ca2+ from sea urchin eggs and a variety of vertebrate cell types, although its mechanism of action remains elusive. We employed the caged version of cADPr to study the [Ca2+] transient kinetics in intact sea urchin eggs for insights into how cADPr gates Ca2+ release. Ca2+ release triggered by photolytic production of cADPr was in...

متن کامل

Pharmacological characterization of the putative cADP-ribose receptor.

cADP-ribose (cADPR), a naturally occurring metabolite of NAD(+), has been shown to be an important regulator of intracellular Ca(2+) release. Considerable evidence suggests that cADPR is the endogenous modulator of the ryanodine receptor (RyR), which mediates Ca(2+)-induced Ca(2+) release (CICR). Indeed, cADPR-mediated Ca(2+) release is subject to functional regulation by other modulators of CI...

متن کامل

Interactions between intracellular Ca2+ stores: Ca2+ released from the NAADP pool potentiates cADPR-induced Ca2+ release.

Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002