Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm

نویسندگان

  • Leonhard Suchenwirth
  • Wolfgang Stümer
  • Tobias Schmidt
  • Michael Förster
چکیده

Among the machine learning tools being used in recent years for environmental applications such as forestry, self-organizing maps (SOM) and the k-nearest neighbor (kNN) algorithm have been used successfully. We applied both methods for the mapping of organic carbon (Corg) in riparian forests due to their considerably high carbon storage capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific foundation for creating large-scale maps showing the spatial Corg distribution is still missing. We estimated organic carbon in a test site in the Danube Floodplain based on RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution maps of vegetation, soil, and total Corg stocks were derived. Results were compared and statistically evaluated with terrestrial survey data for outcomes with pure remote sensing data and for the combination with additional geodata using bias and the Root Mean Square Error (RMSE). Results show that SOM and kNN approaches enable us to reproduce spatial patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when remote sensing and additional geodata are conjointly applied. SOMs show similar percentages of RMSE to kNN estimations. OPEN ACCESS Forests 2014, 5 1636

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

Anomaly Detection Using Self-Organizing Maps-Based K-Nearest Neighbor Algorithm

Self-organizing maps have been used extensively for condition-based maintenance, where quantization errors of test data referring to the self-organizing maps of healthy training data have been used as features. Researchers have used minimum quantization error as a health indicator, which is sensitive to noise in the training data. Some other researchers have used the average of the quantization...

متن کامل

EMG classification for prehensile postures using cascaded architecture of neural networks with self-organizing maps

Electromyograph (EMG) features have the properties of large variations and nonstationarity. An important issue in the classification of EMG is the classifier design. The major goal of this paper is to develop a classifier for the classification of eight kinds of prehensile postures to achieve high classification rate and reduce the online learning time. The cascaded architecture of neural netwo...

متن کامل

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014