Combined detection of intensity and chromatic contours in color images
نویسندگان
چکیده
Andrea Baraldi Flavio Parmiggiani IMGA-CNR Via Emilia Est 770 41100 Modena, Italy E-mail: [email protected] Abstract. In the literature on computer vision, very few contour detection algorithms are designed to deal with color images. In this paper, we present the multispectral contour detection algorithm (MSCDA) which is designed to process multispectral digital images as well as monochromatic ones. The MSCDA employs a bidimensional matrix of processing modules. The structure of a processing module is biologically plausible in that it consists of a bank of oriented filters. Each filter is a multispectral processing element (MSPE). A MSPE computes a contrast strength value locally from a receptive field characterized by specific orientation, shape, and size. The contrast strength value is a combination of an intensity contrast value with a chromatic contrast value, which are computed separately. Intensity contrast assesses the contrast due to local change in light energy, while chromatic contrast measures the contrast generated by local change in chromatic components. Evenand oddsymmetric MSPE pairs cooperate to extract a combined contrast strength value locally. Each processing module extracts one maximum combined contrast strength response from its bank of MSPEs. The maximum values of the combined contrast strength, provided by the grid of processing modules, form the contrast image. The contour candidate and the contour pixels can be extracted from the contrast image according to a strategy which is developed through simulations on 1-D and 2-D data sets. The MSCDA is compared with existing contour detection algorithms theoretically, and experimental results are shown. The MSCDA accounts for several psychophysical effects which are related to the mammalian visual system and may provide new insights into the understanding of the operational schemes employed by the visual cortex in combining energy, color and texture information for shape detection. © 1996 Society of Photo-Optical Instrumentation Engineers.
منابع مشابه
Color contributes to object-contour perception in natural scenes.
The magnitudes of chromatic and achromatic edge contrast are statistically independent and thus provide independent information, which can be used for object-contour perception. However, it is unclear if and how much object-contour perception benefits from chromatic edge contrast. To address this question, we investigated how well human-marked object contours can be predicted from achromatic an...
متن کاملDetection of Blood Vessels in Color Fundus Images using a Local Radon Transform
Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable a...
متن کاملA model of selective masking in chromatic detection.
Narrowly tuned, selective noise masking of chromatic detection has been taken as evidence for the existence of a large number of color mechanisms (i.e., higher order color mechanisms). Here we replicate earlier observations of selective masking of tests in the (L,M) plane of cone space when the noise is placed near the corners of the detection contour. We used unipolar Gaussian blob tests with ...
متن کاملEvent-related potentials reveal an early advantage for luminance contours in the processing of objects.
Detection and identification of objects are the most crucial goals of visual perception. We studied the role of luminance and chromatic information for object processing by comparing performance of familiar, meaningful object contours with those of novel, non-object contours. Comparisons were made between full-color and reduced-color object (or non-object) contours. Full-color stimuli contained...
متن کاملAutomatic Optic Disc Center and Boundary Detection in Color Fundus Images
Accurately detection of retinal landmarks, like optic disc, is an important step in the computer aided diagnosis frameworks. This paper presents an efficient method for automatic detection of the optic disc’s center and estimating its boundary. The center and initial diameter of optic disc are estimated by employing an ANN classifier. The ANN classifier employs visual features of vessels and th...
متن کامل