COX-2-dependent cardiac failure in Gh/tTG transgenic mice.
نویسندگان
چکیده
Gh is a GTP binding protein that couples to the thromboxane receptor (TP), but also functions as tissue transglutaminase II (tTG). A transgenic mouse model was generated in which Gh was overexpressed (GhOE) in ventricular myocytes under the control of the alpha-myosin heavy chain promoter. Heart rate was elevated and both blood pressure and left ventricular ejection fraction were depressed in GhOEs. Left ventricular mass was increased, consistent with genetic and ultrastructural evidence of hypertrophy. Fibrosis and apoptosis were also augmented. Survival declined disproportionately in older GhOEs. Cardiomyocyte expression of COX-2, thromboxane synthase (TxS), and the receptors for TxA2 (the TP), PGF2alpha (the FP), and PGI2 (the IP) were upregulated and urinary 8,12-iso-iPF2alpha-VI,2,3-dinor-6-keto-PGF1alpha and 2,3-dinor-thromboxane B2 were increased in GhOEs, reflecting increased lipid peroxidation and cyclooxygenase (COX) activation. Selective COX-2 inhibition, TP antagonism, and suppression of lipid peroxidation each rescued the cardiac phenotype. Infusion of an FP agonist exacerbated the phenotype, whereas administration of an IP agonist improved cardiac function. Directed cardiac overexpression of Gh/tTG causes both TG activation and increased TP/Gh-dependent signaling. The COX-2-dependent increase in TxA2 generation augments cardiac hypertrophy, whereas formation of PGI2 by the same isozyme ameliorates the phenotype. Oxidant stress may contribute, via regulation of COX-2 expression and/or ligation of the TP and the FP by isoprostanes. Gh/tTG activation regulates expression of COX-2 and its products may differentially modulate cardiomyocyte commitment to cell death or survival.
منابع مشابه
Growth hormone (GH)‐transgenic insulin‐like growth factor 1 (IGF1)‐deficient mice allow dissociation of excess GH and IGF1 effects on glomerular and tubular growth
Growth hormone (GH)-transgenic mice with permanently elevated systemic levels of GH and insulin-like growth factor 1 (IGF1) reproducibly develop renal and glomerular hypertrophy and subsequent progressive glomerulosclerosis, finally leading to terminal renal failure. To dissociate IGF1-dependent and -independent effects of GH excess on renal growth and lesion development in vivo, the kidneys of...
متن کاملProlonged exposure to GH impairs insulin signaling in the heart.
Acromegaly is associated with cardiac hypertrophy, which is believed to be a direct consequence of chronically elevated GH and IGF1. Given that insulin is important for cardiac growth and function, and considering that GH excess induces hyperinsulinemia, insulin resistance, and cardiac alterations, it is of interest to study insulin sensitivity in this tissue under chronic conditions of elevate...
متن کاملGrowth hormone-releasing peptides and the heart: secretagogues or cardioprotectors?
Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are multifunctional hormones with potent cardiotropic effects in prenatal and postnatal cardiac development. Evidence from animal and clinical studies has documented the beneficial effects of the GH-IGF-1 axis on cardiac hypertrophy and contractile function under conditions of GH deficiency, cardiomyopathy and ischemia reperfusion inj...
متن کاملSuppression of growth hormone (GH) Janus tyrosine kinase 2/signal transducer and activator of transcription 5 signaling pathway in transgenic mice overexpressing bovine GH.
High continuous GH levels in vivo produce desensitization of the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) pathway of GH signaling in the liver. To evaluate the mechanisms involved in this desensitization, transgenic mice overexpressing bovine GH were used. In these animals, GH receptor and membrane-associated JAK2 kinase are increased 4.5- and 6-...
متن کاملGrowth hormone, cardiomyocyte contractile reserve, and heart failure.
In this issue of Circulation, Tajima et al 1 report that recombinant human growth hormone (GH) (3.5 mg z kg z d) given for 2 weeks, while not affecting baseline function, restored myocardial contractile reserve in cardiomyocytes isolated from rats 4 to 6 weeks after myocardial infarction (MI) compared with vehicle-treated post-MI rats. In addition, the peak of the Ca transient, which was normal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 92 10 شماره
صفحات -
تاریخ انتشار 2003