Characterizing Pattern based Clustering
نویسندگان
چکیده
ÊÊ BLOCKIN
منابع مشابه
Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf
This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملPii: S0031-3203(97)00004-6
--Thresholding, the problem of pixel classification is attempted here using fuzzy clustering algorithms. The segmented regions are fuzzy subsets, with soft partitions characterizing the region boundaries. The validity of the assumptions and thresholding schemes are investigated in the presence of distinct region proportions. The hard k means and fuzzy c means algorithms have been found useful w...
متن کاملClustering based on random graph model embedding vertex features
Large datasets with interactions between objects are common to numerous scientific fields (i.e. social science, internet, biology. . . ). The interactions naturally define a graph and a common way to explore or summarize such dataset is graph clustering. Most techniques for clustering graph vertices just use the topology of connections ignoring informations in the vertices features. In this pap...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کامل