Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: implications for slope stability, Edmonds, Washington, USA
نویسندگان
چکیده
Shallow landslides on steep (>25) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5 m. Measurements from these instruments are used to test oneand twodimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the Correspondence to: G. Biavati ([email protected]) same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions, pressure head is significantly reduced near the drain; however, for transient, vertical infiltration in a partially saturated soil, conditions consistent with those observed during monitoring at the Edmonds site, the drain decreases the thickness of a perched water table by a small amount.
منابع مشابه
The Influence of Hillslope Length and Direction on Runoff and Soil LossUnder Natural Rainfall in an Arid Region
Analyzing variability of measured runoff and soil loss data under different condition of measurement system, are critical for advancing erosion science, evaluating hydrologic models, and designing erosion experiments. For this purpose, the current study aimed to evaluate how runoff and soil loss are influenced by hillslope direction and length in Sangane arid rangeland, Razavi Khorasan Provi...
متن کاملA low-dimensional physically based model of hydrologic control of shallow landsliding on complex hillslopes
Hillslopes have complex three-dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslopestorage Boussinesq (HSB) model with the infinite slope stability method. The HSB model is based on the continuity and Da...
متن کاملInstrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability
[1] The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of th...
متن کاملAssessment of Critical Condition for Rill Initiation on Degraded Hillslope
Generally, the evaluation and assessment critical condition of rill formation are useful for a better understanding of soil erosion processes. The inherence characteristics of soils, which have much dynamic variations on the hill-slopes and are affected by rill formation, are the soil critical shear stress and soil erodibility factors. This study aims to assess experimental rill incision thre...
متن کاملQuantification of the influence of preferential flow on slope stability using a numerical modelling approach
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is s...
متن کامل