Heat shock-induced protection of renal proximal tubular epithelial cells from cold storage and rewarming injury.
نویسندگان
چکیده
Cold storage and reperfusion injury to transplanted kidneys contributes to increased incidence of delayed graft function and may have a negative impact on graft survival. This study examined the mechanisms by which previous heat shock protects against cell death in an in vitro model of kidney storage. Cold storage is mimicked by incubating human renal proximal tubular epithelial (HK-2) cells in University of Wisconsin solution at 4 degrees C with and without subsequent rewarming. Heat shock was induced by incubation of cells at 42 degrees C for 1 h. Altered protein expression was measured by Western blot, and cell viability and apoptosis were measured by propidium iodide DNA staining using flow cytometry. The specific role of heat-shock protein 70 (HSP-70) was determined both by siRNA knockdown and by stable overexpression approaches. Cold storage and rewarming-induced cell death was associated with decreased expression of HSP-70, HSP-90, HSP-27, and Bcl-2. Previous heat shock significantly reduced HK-2 cell death after cold storage and rewarming and was associated with the maintenance of HSP-70, HSP-27, and Bcl-2 protein levels. Blocking heat stress-induced HSP-70 with siRNA did not significantly block the protective effect of heat stress against cold storage and rewarming cell death; however, overexpression of HSP-70 protected HK-2 cells from this stress. It is concluded that previous heat shock protects HK-2 cells from cold storage and rewarming injury. siRNA inhibition of HSP-70 induction did not block the protective effect of heat shock, indicating that HSP-70 is not essential to the heat stress-induced protective effect reported in this study.
منابع مشابه
Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming
Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules...
متن کاملRole of mitochondrial-derived oxidants in renal tubular cell cold-storage injury.
Cold storage (CS) is regarded as a necessary procedure during donation of a deceased-donor kidney that helps to optimize organ viability. Increased oxidant generation during CS as well as during the reperfusion (or rewarming/CS.RW) phase has been suggested to be a major contributor to renal injury, although the source of and/or biochemical pathways involved in oxidant production remain unclear....
متن کاملThe mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys.
The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determi...
متن کاملTangeretin protects renal tubular epithelial cells against experimental cisplatin toxicity
Objective(s): Cisplatin is an effective antineoplastic agent; its clinical utility, however, is limited by a few salient toxic side effects like nephrotoxicity. This study aimed to determine the potential protective effects of tangeretin, a citrus-derived flavonoid, against renal tubular cell injury in cisplatin-induced renal toxicity of rats.Materials and Methods: Tangeretin was injected intra...
متن کاملAutophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway
PURPOSE Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. METHODS NRK-52E cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2006