Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm
نویسنده
چکیده
In papers[1, 2], the amplitudes of continuous-time quantum walk on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated to their adjacency matrix. Here in this paper, it is shown that the continuous-time quantum walk on any arbitrary graph can be investigated by spectral distribution method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. Finally the capability of Lanczos-based algorithm for evaluation of walk on arbitrary graphs ( GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at infinite limit of number of vertices, are in agreement with those of central limit theorem of Ref.[3].
منابع مشابه
Krylov subspace methods for the Dirac equation
The Lanczos algorithm is evaluated for solving the time-independent as well as the time-dependent Dirac equation with arbitrary electromagnetic fields. We demonstrate that the Lanczos algorithm can yield very precise eigenenergies and allows very precise time propagation of relativistic wave packets. The unboundedness of the Dirac Hamiltonian does not hinder the applicability of the Lanczos alg...
متن کاملA Krylov Subspace Algorithm for Evaluating the Φ-functions Appearing in Exponential Integrators
We develop an algorithm for computing the solution of a large system of linear ordinary differential equations (ODEs) with polynomial inhomogeneity. This is equivalent to computing the action of a certain matrix function on the vector representing the initial condition. The matrix function is a linear combination of the matrix exponential and other functions related to the exponential (the so-c...
متن کاملQuantum search in structured database using local adiabatic evolution and spectral methods
SinceGrover’s seminalworkwhich provides away to speed up combinatorial search, quantum search has been studied in great detail. We propose a newmethod for designing quantum search algorithms for finding a marked element in the state space of a graph. The algorithm is based on a local adiabatic evolution of the Hamiltonian associated with the graph. The main new idea is to apply some techniques ...
متن کاملA Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process
We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapt...
متن کاملThe Multiple Point Global Lanczos Method for Multiple-Inputs Multiple-Outputs Interconnect Order Reductions
The global Lanczos algorithm for solving the RLCG interconnect circuits is presented in this paper. This algorithm is an extension of the standard Lanczos algorithm for multiple-inputs multiple-outputs (MIMO) systems. A new matrix Krylov subspace will be developed first. By employing the congruence transformation with the matrix Krylov subspace, the two-side oblique projection-based method can ...
متن کامل