Kv1.1 channels of dorsal root ganglion neurons are inhibited by n-butyl-p-aminobenzoate, a promising anesthetic for the treatment of chronic pain.
نویسندگان
چکیده
In this study, we investigated the effects of the local anesthetic n-butyl-p-aminobenzoate (BAB) on the delayed rectifier potassium current of cultured dorsal root ganglion (DRG) neurons using the patch-clamp technique. The majority of the K(+) current of small DRG neurons rapidly activates and slowly inactivates at depolarized voltages. BAB inhibited the whole-cell K(+) current of these neurons with an IC(50) value of 228 microM. Dendrotoxin K (DTX(K)), a specific inhibitor of Kv1.1, reduced the DRG K(+) current at +20 mV by 34%, consistent with an important contribution of channels incorporating the Kv1.1 subunit to the delayed rectifier current. To further investigate the mechanism of BAB inhibition, we examined its effect on Kv1.1 channels heterologously expressed in mammalian tsA201 cells. BAB inhibits the Kv1.1 channels with an IC(50) value of 238 microM, similar to what was observed for the native DRG current. BAB accelerates the opening and closing of Kv1.1, but does not alter the midpoint of steady-state activation. BAB seems to inhibit Kv1.1 by stabilizing closed conformations of the channel. Coexpression with the Kv beta 1 subunit induces rapid inactivation and reduces the BAB sensitivity of Kv1.1. Comparison of the heterologously expressed Kv1.1 and native DRG currents indicates that the Kv beta 1 subunit does not modulate the gating of the DTX(K)-sensitive Kv1.1 channels of DRG neurons. Inhibition of the delayed rectifier current of these neurons may contribute to the long-duration anesthesia attained during the epidural administration of BAB.
منابع مشابه
Inhibition of the A-type K+ channels of dorsal root ganglion neurons by the long-duration anesthetic butamben.
n-Butyl-p-aminobenzoate (BAB; butamben) is a long-duration anesthetic used for the treatment of chronic pain. Epidural administration of BAB is thought to reduce the electrical excitability of dorsal root nociceptor fibers by inhibiting voltage-gated ion channels. To further investigate this mechanism, we examined the effects of BAB on the potassium currents of acutely dissociated neurons from ...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملElectroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain
Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...
متن کاملElectroacupuncture reduces chronic fibromyalgia pain through attenuation of transient receptor potential vanilloid 1 signaling pathway in mouse brains
Objective(s): Fibromyalgia pain is a mysterious clinical pain syndrome, characterized by inflammation in the brain, whose molecular mechanisms are still unknown. Females are more commonly affected by fibromyalgia, exhibiting symptoms such as widespread mechanical pain, immune dysfunction, sleep disturbances, and poor quality of life. Electroacupuncture (EA) has been us...
متن کاملThe local anesthetic butamben inhibits and accelerates low-voltage activated T-type currents in small sensory neurons.
Butamben (BAB) is a local anesthetic that can be used in epidural suspensions for long-term selective suppression of dorsal root pain signal transmission and in ointments for the treatment of skin pain. Previously, high-voltage activated N-type calcium channel inhibition has been implicated in the analgesic effect of BAB. In the present study we show that low-voltage activated or T-type calcium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 304 2 شماره
صفحات -
تاریخ انتشار 2003