MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting β-catenin

نویسندگان

  • Chun-Xu Yang
  • Shi-Min Zhang
  • Jie Li
  • Bo Yang
  • Wen Ouyang
  • Zi-Jie Mei
  • Jing Chen
  • Jing Dai
  • Su Ke
  • Fu-Xiang Zhou
  • Yun-Feng Zhou
  • Cong-Hua Xie
چکیده

Cervical cancer is the second most common malignancy in women worldwide and always has recurrence owing to radioresistance. MicroRNA (miRNA or miR) has been identified to relate to the sensitivity of cancer radiotherapy. Here, we investigated the potential of miRNA-320 as a biomarker for radiosensitivity by targeting β-catenin in cervical cancer. A radioresistant cervical cancer cell line, C33AR, was established, and the radioresistance of C33AR cells was confirmed by a colony-formation assay. The expression of miRNA-320 was detected by reverse transcription-quantitative polymerase chain reaction, and compared between C33A and C33AR. β-catenin, the target of miRNA-320, was determined at the protein level by western blotting after transfecting the inhibitor of miRNA-320. The expression of miRNA-320 was markedly decreased in C33AR cells, which appeared to be more radioresistant, compared with its parental cell line C33A. Target prediction suggested that miRNA-320 negatively regulated the expression of β-catenin. Knockdown of β-catenin increased C33AR radiosensitivity, which revealed that the inhibition of β-catenin could rescue the miRNA-320-mediated cell radioresistance. On the other hand, overexpressing miRNA-320 increased C33AR radiosensitivity. In conclusion, miRNA-320 regulated the radiosensitivity of C33AR cells by targeting β-catenin. This finding provides evidence that miRNA-320 may be a potential biomarker of radiosensitivity in cervical cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway

Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...

متن کامل

MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway I-Shan Hsieh1, Kung-Chao Chang2, Yao-Tsung Tsai1, Jhen-Yu Ke3, Pei-Jung Lu4, Kuen-Haur Lee5, Shauh-Der Yeh6, Tse-Ming Hong4, and Yuh-Ling Chen1,3,*

Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44high prostate tumor-initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression re...

متن کامل

MicroRNA-320 Enhances Radiosensitivity of Glioma Through Down-Regulation of Sirtuin Type 1 by Directly Targeting Forkhead Box Protein M1

Glioma is the most common cancer in human brain system and seriously threatens human health. miRNA-320 has been demonstrated to be closely correlated with the development of glioma. However, its effect and molecular mechanism underlying radioresistance have not been fully elucidated in glioma. Here, RT-qPCR assay was used to assess the expressions of miR-320 and forkhead box protein M1 (FoxM1) ...

متن کامل

Cancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells

Cancer, as one of the most serious public health problems, is the second-leading cause of death in the world after cardiovascular disease. The number of patients and the resulting mortality are increasing worldwide; therefore, early diagnosis, prevention, and effective treatment of cancer are very important. Current treatments such as chemotherapy and radiation therapy are often non-selective a...

متن کامل

MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway

We investigated the miRNA profiles of breast cancer stem cells (CSCs) and non-CSC tumor cells by miRNA microarray and determined the effect of altered miR-1 expression on proliferation and migration of breast CSCs. The potential targets of miR-1 in the Wnt/β-catenin signaling were characterized by bioinformatics analysis and luciferase assay. We found that 14 miRNAs were up-regulated and 13 wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016