A New Method of Noise Variance Estimation from Low-Order Yule-Walker Equations

نویسندگان

  • Jonah Gamba
  • Tetsuya Shimamura
چکیده

The processing of noise-corrupted signals is a common problem in signal processing applications. In most of the cases, it is assumed that the additive noise is white Gaussian and that the constant noise variance is either available or can be easily measured. However, this may not be the case in practical situations. We present a new approach to additive white Gaussian noise variance estimation. The observations are assumed to be from an autoregressive process. The method presented here is iterative, and uses low-order Yule-Walker equations (LOYWEs). The noise variance is obtained by minimizing the difference in the second norms of the noisy Yule-Walker solution and the estimated noise-free Yule-Walker solution. The noise-free solution is constrained to match the observed autocorrelation sequence. In the iterative noise variance estimation method, a variable stepsize update scheme for the noise variance parameter is utilized. Simulation results are given to confirm the effectiveness of the proposed method. key words: noise variance, Yule-Walker equations, autoregressive process, subspace method

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Noise Variance from the Noisy Ar and Its Application in Speech Enhancement Signal

I n a number of applications involving the processing of noisy signals, it is desirable to know a priori the noise variance. We propose here a method of estimating the noise variance from the autoregressive (AR) signal corrupted by the additive white noise. This method first estimates the AR parameters from the highorder Yule-Wal ker equations and then uses these AR parameters to estimate ,the ...

متن کامل

A Noise-compensated Long Correlation Matching Method for Ar Spectral Estimation of Noisy Signals

A noise-compensated long correlation matching (NCLCM) method is proposed for autoregressi~e ~AR) spectral estimation of the noisy AR signals. This method first computes the AR parameters from the high-order "(ule-Walker equations. Next, it employs these AR parameters and uses the low-order Yule-Walker equations to compensate the zeroth autocorrelation coefficient for the additive white noise. F...

متن کامل

Iterative Estimation Algorithm of Autoregressive Parameters

This paper presents an iterative autoregressive system parameter estimation algorithm in the presence of white observation noise. The algorithm is based on the parameter estimation bias correction approach. We use high order Yule–Walker equations, sequentially estimate the noise variance, and exploit these estimated variances for the bias correction. The improved performance of the proposed alg...

متن کامل

On the noise-compensated Yule-Walker equations

Recently a method of estimating the parameters of an AR(p) random process based on measurements corrupted by additive white noise was described. The method involves solving a matrix pencil, called the Noise-Compensated Yule-Walker (NCYW) equations, for the AR parameters and the variance of the measurement noise. In this correspondence we give a necessary and sufficient condition for there to ex...

متن کامل

Multitapering for Estimating Time Domain Parameters of Autoregressive Processes

The most commonly used method for estimating the time domain parameters of an autoregressive process is to use the Yule-Walker equations. The Yule-Walker estimates of the parameters of an autoregressive process of order p, or AR(p), are known to often be highly biased. This can lead to inappropriate order selection and very poor forecasting. There is a Fourier transform relationship between the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 87-A  شماره 

صفحات  -

تاریخ انتشار 2004