Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule
نویسندگان
چکیده
The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.
منابع مشابه
High-order above-threshold dissociation of molecules
Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case...
متن کاملPrecision calculation of above-threshold multiphoton ionization in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized pseudospectral method
We present an approach in momentum (P) space for the accurate study of multiphoton and above-threshold ionization (ATI) dynamics of atomic systems driven by intense laser fields. In this approach, the electron wave function is calculated by solving the P-space time-dependent Schrödinger equation (TDSE) in a finite P-space volume under a simple zero asymptotic boundary condition. The P-space TDS...
متن کاملHigh-order perturbation expansion of non-Hermitian Floquet theory for multiphoton and above-threshold ionization processes
A high-order perturbation theory is presented for efficient and accurate computation of multiphoton and above-threshold ionization cross sections of atoms and molecules in weak to medium strength laser fields. The procedure is based on a Raleigh-Schrödinger perturbative expansion of the time-independent non-Hermitian Floquet Hamiltonian. The reduced Green function and generalized pseudospectral...
متن کاملMultiphoton Rabi oscillations of correlated electrons in strong-field nonsequential double ionization
With quantum calculations, we have investigated the multiphoton nonsequential double ionization of helium atoms in intense laser fields at ultraviolet wavelengths. Very surprisingly, we found a so-far unobserved doublecircle structure in the correlated electron momentum spectra. The double-circle structure essentially reveals multiphoton Rabi oscillations of two electrons, which are strongly su...
متن کاملDesign of a new asymmetric waveguide in InP-Based multi-quantum well laser
Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...
متن کامل