Facile synthesis of guanidyl-functionalized magnetic polymer microspheres for tunable and specific capture of global phosphopeptides or only multiphosphopeptides.

نویسندگان

  • Zhichao Xiong
  • Yajing Chen
  • Lingyi Zhang
  • Jun Ren
  • Quanqing Zhang
  • Mingliang Ye
  • Weibing Zhang
  • Hanfa Zou
چکیده

The highly selective and efficient capture of heterogeneous types of phosphopeptides is critical for comprehensive and in-depth phosphoproteome analysis, but it still remains a challenge since the lack of affinity material with large binding capacity and controllable specificity. Here, a new affinity material was prepared to improve the enrichment capacity and endue the tunable specificity by introducing guanidyl onto poly(glycidyl methacrylate) (PGMA) modified Fe3O4 microsphere (denoted as Fe3O4@PGMA-Guanidyl). The thick polymer shell endows the composite microsphere with large amount of guanidyl and is beneficial to enhancing the affinity interaction between phosphopeptides and the material. Interestingly, the Fe3O4@PGMA-Guanidyl possesses tunable enriching ability for global phosphopeptides or only multiphosphopeptides through simple regulation of buffer composition. The composite has large enrichment capacity (200 mg g(-1)), extremely high detection sensitivity (0.5 fmol), high enrichment recovery (91.30%), great specificity, and rapid magnetic separation. Moreover, the result of the application to capture of phosphopeptides from tryptic digest of nonfat milk has demonstrated the great potential of Fe3O4@PGMA-Guanidyl in detection and identification of low-abundance phosphopeptides of interest in biological sample.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides.

Guanidyl-functionalized graphene (GFG) was designed and synthesized. By simple modulation of the loading buffer this novel bifunctional adsorbent provides two enriching functions, one for global phosphopeptides, and the other for multiphosphopeptides with consecutive phosphorylated residues. GFG provides a promising perspective for consecutive phosphorylated peptide enrichment in phosphor-prote...

متن کامل

Fabrication of Alkoxyamine-Functionalized Magnetic Core-Shell Microspheres via Reflux Precipitation Polymerization for Glycopeptide Enrichment

As a facile method to prepare hydrophilic polymeric microspheres, reflux precipitation polymerization has been widely used for preparation of polymer nanogels. In this article, we synthesized a phthalamide-protected N-aminooxy methyl acrylamide (NAMAm-p) for preparation of alkoxyamine-functionalized polymer composite microspheres via reflux precipitation polymerization. The particle size and fu...

متن کامل

Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu...

متن کامل

Titania coated magnetic mesoporous hollow silica microspheres: fabrication and application to selective enrichment of phosphopeptides.

Titania coated magnetic hollow mesoporous silica spheres with high surface area were created, which can be used in efficient and rapid capture of phosphopeptides from peptide mixtures.

متن کامل

Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample.

A facile and highly efficient approach to obtain narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with molecular recognition ability in a real biological sample as good as what they show in the organic solvent-based media is described for the first time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 24  شماره 

صفحات  -

تاریخ انتشار 2014