Enhancement of Stabilization for Passive Walking by Chaos Control Approach
نویسندگان
چکیده
Passive walking is an attractive walking style which emerges autonomously on shallow slope without external input. It is known that the walking motion varies to chaotic in the vicinity of the limit of the stable walking. This phenomenon had been analyzed well, but had not been utilized directly for control. Usually only period-1 w alking gait has been dealt with as an active usage of passive walking . In this paper, a strategy to enlarge the walkable range of passive walking by chaos control technique is presented. It is demonstrated by simulation that the walker can walk on more inclined slope and the levitation of legs is induced.
منابع مشابه
Stabilization and Walking Control for a Simple Passive Walker Using Computed Torque Method (RESEARCH NOTE)
Abstract The simple passive dynamic walker can walk down a shallow downhill slope with no external control or energy input. Nevertheless, the period-one gait stability is only possible over a very narrow range of slopes. Since the passive gaits are extremely sensitive to slope angles, it is important to use a control strategy in order to achieve a wide range of stable walking. The computed to...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملCompliant ankles and flat feet for improved self-stabilization and passive dynamics of the biped robot "RunBot"
Biomechanical studies of human walking reveal that compliance plays an important role at least in natural and smooth motions as well as for self-stabilization. Inspired by this, we present here the development of a new lower leg segment of the dynamic biped robot “RunBot”. This new lower leg segment features a compliant ankle connected to a flat foot. It is mainly employed to realize robust sel...
متن کاملFrom Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کامل