Developmentally regulated functions of the H19 differentially methylated domain.

نویسندگان

  • Maria Vernucci
  • Flavia Cerrato
  • Paolo V Pedone
  • Luisa Dandolo
  • Carmelo B Bruni
  • Andrea Riccio
چکیده

Igf2 and H19 are physically linked imprinted genes. In embryonic liver, their reciprocal expression (paternal for Igf2 and maternal for H19) is controlled by a paternally methylated region (H19 DMD) located 5' of H19. This region contains a methylation-sensitive insulator that prevents the Igf2 promoters being activated by downstream enhancers on the maternal chromosome. In adult liver, Igf2 is normally not expressed but is reactivated upon tumour formation. By analysing three deletions of the H19 locus, we investigated the mechanism regulating the imprinted expression of the Igf2 gene in the course of liver tumourigenesis. We observed that the role of the H19 DMD in the control of Igf2 expression changes during tumourigenesis. The H19 DMD is required on the paternal chromosome for Igf2 activation in the early stages while its maternal allele is necessary for maintaining Igf2 imprinting only in the late stages. A positive regulatory function of the paternal H19 DMD is also evident in normal neonatal liver, but its relevance for Igf2 expression becomes higher in the second post-natal week. Our results support a model in which both methylated and non-methylated parental copies of the H19 DMD have active roles in the regulation of Igf2 expression in the liver and these activities are under developmental control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylation Status of H19/IGF2 Differentially Methylated Region in in vitro Human Blastocysts Donated by Healthy Couples

Backgrund: Imprinted genes are a unique subset of few genes, which have been differentially methylated region (DMR) in a parental origin-dependent manner during gametogenesis, and these genes are highly protected during pre-implantation epigenetic reprogramming. Several studies heve shown that the particular vulnerability of imprinting genes during suboptimal pre- and peri-conception microenvir...

متن کامل

The H19 differentially methylated region marks the parental origin of a heterologous locus without gametic DNA methylation.

Igf2 and H19 are coordinately regulated imprinted genes physically linked on the distal end of mouse chromosome 7. Genetic analyses demonstrate that the differentially methylated region (DMR) upstream of the H19 gene is necessary for three distinct functions: transcriptional insulation of the maternal Igf2 allele, transcriptional silencing of paternal H19 allele, and marking of the parental ori...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Shared role for differentially methylated domains of imprinted genes.

For most imprinted genes, a difference in expression between the maternal and paternal alleles is associated with a corresponding difference in DNA methylation that is localized to a differentially methylated domain (DMD). Removal of a gene's DMD leads to a loss of imprinting. These observations suggest that DMDs have a determinative role in genomic imprinting. To examine this possibility, we i...

متن کامل

Developmental profile of H19 differentially methylated domain (DMD) deletion alleles reveals multiple roles of the DMD in regulating allelic expression and DNA methylation at the imprinted H19/Igf2 locus.

The differentially methylated domain (DMD) of the mouse H19 gene is a methylation-sensitive insulator that blocks access of the Igf2 gene to shared enhancers on the maternal allele and inactivates H19 expression on the methylated paternal allele. By analyzing H19 DMD deletion alleles H19DeltaDMD and H19Delta3.8kb-5'H19 in pre- and postimplantation embryos, we show that the DMD exhibits positive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2004