Acute effects of ionizing radiation on human endothelial barrier function
نویسندگان
چکیده
The human vasculature is critical to healthy functioning of the tissues of the body and a major factor in maintaining homeostasis is the endothelial barrier. In the brain, the blood–brain barrier (BBB) is highly specialized in order to sustain the neural tissue. Here, we have examined the effects of radiation on BBB models using a unique variety of endpoints to assess barrier function. These include trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in two-dimensional monolayers and in three-dimensional tissue models) and permeability of molecules through the endothelial barrier. Two culture conditions were used to represent conditions on the inside or the lumen of vessels and conditions on the outside or ablumenal side of vessels. For the lumen, cells were cultured in serum and growth factor containing media, and for the ablumenal side of vessels, cells were cultured in serum-free defined media. Initial experiments with gamma rays in serum-free conditions revealed a previously unknown acute effect involving cell detachment and the loss of the clinically relevant cell adhesion molecule—cell platelet endothelial adhesion molecule (PECAM)-1 [1]. Gamma radiation (5 Gy) induced a rapid and transient decrease in TEER at 3 h, with effects also seen at the lower radiotherapy dose of 2 Gy. This dip in resistance correlated with the transient loss PECAM-1 in discrete areas where cells often detached from the monolayer leaving gaps. Loss in PECAM-1 occurred at least in part as detached microparticles. Redistribution of PECAM-1 microparticles was also seen in three-dimensional human tissue models. By 6 h, the remaining cells had migrated to reseal the barrier, coincident with TEER returning to control levels. Resealed monolayers contained fewer cells per unit area and their barrier function was weakened as corroborated by an increased permeability over 24 h. Because PECAM-1 is involved in barrier function and platelet aggregation, this effect is likely highly relevant to cancer radiotherapy using gamma rays. These studies were extended to include low linear energy transfer (LET) photons of X-rays and ion particles present in the space environment—low LET ion particles including high energy (1 GeV) protons and helium ions. X-rays under serum-free conditions also showed an acute response involving a dip in TEER at 3 h and the loss of PECAM-1 between cells as microparticles. Ion particles, however, did not show these effects of photons under serum-free conditions. Both protons and helium ions at doses up to 5 Gy did not produce this transient change in TEER or PECAM-1, although some longer term effects in TEER were noted. In the presence of serum and growth factors, however, all radiations tested showed short-term effects in TEER, that of a series of symmetrical peaks which diminished in size over several hours. For 1 GeV protons and helium ions, this effect could be fitted to an equation for under-damped oscillation, a pattern typical of a mechanism for timing of events in periodic processes. For gamma and X-rays, the underdamped oscillation was present but superimposed on a drop in resistance at 3 h similar to that seen in serum-free conditions. In conclusion, we have shown two acute effects of low LET radiation on the human endothelial barrier. First, a short-term effect of photons but not ion particles involving a single dip in TEER and the loss of PECAM-1 at 3 h after irradiation, and second an underdamped oscillation of TEER induced by both photons and ion particles that to date does not appear to be associated with the loss of PECAM-1 or any other junction molecules.
منابع مشابه
Impedance-based surveillance of transient permeability changes in coronary endothelial monolayers after exposure to ionizing radiation.
The relative radiation sensitivities of the various compartments of the heart are poorly characterized. Cardiac fibrosis is a common side effect of radiotherapy, suggesting that endothelial barrier function is an important factor in radiation-induced pathology. We employed Electric Cell Substrate Impedance Sensing (ECIS) to assess cytoskeletal rearrangement, permeability changes and endothelial...
متن کاملEndothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation.
Acute disruption of blood-brain barrier (BBB) is well recognized after radiation therapy to the central nervous system (CNS). We assessed the genetic regulation of acute BBB disruption and its relationship to vascular endothelial cell death in the CNS after irradiation. Adult rats were given graded single doses of X-ray to the cervical spinal cord. At different time intervals after irradiation,...
متن کاملEffects of gamma radiation on adipose-derived mesenchymal stem cells of human breast tissue
Background: During radiation therapy, stromal cells surrounding the tumor (e.g mesenchymal stem cells) may affect the treatment outcomes. We aimed to investigate the effects of gamma radiation on the mRNA expression of cytokines, DNA damage and population doubling time (PDT) of adipose-derived mesenchymal stem cells (ASCs). Material and methods: ASCs were enzymatically extracted from breast tis...
متن کاملRadiation hormesis and adoptive response induced by low doses of limiting radiation
Ionizing radiation has long been known to produce detrimental biological effects. Although these harmful effects are the results of high doses of exposure, some other maladies such as mutation and cancer seems to be induced at low doses of exposure. In recent decades, however, some pioneer scientists have indicated that ionizing radiation like many other essential agents has toxic effects ...
متن کاملRadioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats
The aim of this study was to investigate the radioprotective effect of thymol as a natural product against salivary glands dysfunction induced by ionizing radiation in rats. The rats were treated with thymol at dose of 50 mg/Kg before exposure to radiation at dose 15Gy. Salivary gland function was evaluated with radioisotope scintigraphy and then salivary gland to background counts ratio was ca...
متن کامل