Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress.

نویسندگان

  • Sudarshana Purkayastha
  • Hai Zhang
  • Guo Zhang
  • Zaghloul Ahmed
  • Yi Wang
  • Dongsheng Cai
چکیده

Chronic endoplasmic reticulum (ER) stress was recently revealed to affect hypothalamic neuroendocrine pathways that regulate feeding and body weight. However, it remains unexplored whether brain ER stress could use a neural route to rapidly cause the peripheral disorders that underlie the development of type 2 diabetes (T2D) and the metabolic syndrome. Using a pharmacologic model that delivered ER stress inducer thapsigargin into the brain, this study demonstrated that a short-term brain ER stress over 3 d was sufficient to induce glucose intolerance, systemic and hepatic insulin resistance, and blood pressure (BP) increase. The collection of these changes was accompanied by elevated sympathetic tone and prevented by sympathetic suppression. Molecular studies revealed that acute induction of metabolic disorders via brain ER stress was abrogated by NF-κB inhibition in the hypothalamus. Therapeutic experiments further revealed that acute inhibition of brain ER stress with tauroursodeoxycholic acid (TUDCA) partially reversed obesity-associated metabolic and blood pressure disorders. In conclusion, ER stress in the brain represents a mediator of the sympathetic disorders that underlie the development of insulin resistance syndrome and T2D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction

The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a "glucolipotoxic" environment of the pancreatic islets, in in...

متن کامل

Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling

Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...

متن کامل

Spermidine may decrease ER stress in pancreatic beta cells and may reduce apoptosis via activating AMPK dependent autophagy pathway.

The risk for diabetes increases with increasing BMI<25. Insulin resistance is the key factor for type 2 diabetes; studies revealed that endoplasmic reticulum stress is the main factor behind this disease. With increase in ER stress, pancreatic beta cells start to undergo apoptosis, leading to a decline in the pancreatic beta cell population. The ER stress arises due to unfolded protein response...

متن کامل

Insulin Resistance and Metabolic Failure Underlie Alzheimer Disease

Alzheimer disease (AD) is the most common cause of dementia in North America. Despite 30+ years of intensive research, gaps remain in our understanding of AD pathogenesis and approaches to treatment. However, the recent rapid shift to a paradigm that focuses on the roles of metabolic dysfunction and insulin and insulin-like growth factor (IGF) resistance as causal agents of cognitive impairment...

متن کامل

Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats☆

Insulin acts in the hypothalamus, decreasing food intake (FI) by the IR/PI3K/Akt pathway. This pathway is impaired in obese animals and endoplasmic reticulum (ER) stress and low-grade inflammation are possible mechanisms involved in this impairment. Here, we highlighted the amygdala as an important brain region for FI regulation in response to insulin. This regulation was dependent on PI3K/AKT ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 7  شماره 

صفحات  -

تاریخ انتشار 2011