Inner models and large cardinals
نویسنده
چکیده
§0. The ordinal numbers were Georg Cantor’s deepest contribution to mathematics. After the natural numbers 0, 1, . . . , n, . . . comes the first infinite ordinal number ù, followed by ù + 1, ù + 2, . . . , ù + ù, . . . and so forth. ù is the first limit ordinal as it is neither 0 nor a successor ordinal. We follow the von Neumann convention, according to which each ordinal number α is identified with the set {í | í < α} of its predecessors. The ∈ relation on ordinals thus coincides with <. We have 0 = ∅ and α + 1 = α ∪ {α}. According to the usual set-theoretic conventions, ù is identified with the first infinite cardinal א0, similarly for the first uncountable ordinal number ù1 and the first uncountable cardinal number א1, etc. 2 We thus arrive at the following picture:
منابع مشابه
Large Cardinals and L-like Universes
There are many different ways to extend the axioms of ZFC. One way is to adjoin the axiom V = L, asserting that every set is constructible. This axiom has many attractive consequences, such as the generalised continuum hypothesis (GCH), the existence of a definable wellordering of the class of all sets, as well as strong combinatorial principles, such as ♦, and the existence of morasses. Howeve...
متن کاملLarge Cardinals, Inner Models, and Determinacy: An Introductory Overview
We sketch a brief development of large cardinals as they apply to determinacy results and to inner model theory.
متن کاملInner models with large cardinal features usually obtained by forcing
We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ ...
متن کاملDescriptive Inner Model Theory , Large Cardinals , and Combinatorics Research Statement Nam Trang
My research interest is in mathematical logic and set theory. My current research focuses on studying the connections between inner models, (determined) sets of reals, hybrid structures (such as HOD1 of determinacy models), forcing, and strong combinatorial principles (such as the Proper Forcing Axiom (PFA), (generalizations of) the tree property, the Unique Branch Hypothesis (UBH)). I’m also i...
متن کاملDeterminacy in strong cardinal models
We give limits defined in terms of abstract pointclasses of the amount of determinacy available in certain canonical inner models involving strong cardinals. We show for example: Theorem A Det(Π1-IND)⇒there exists an inner model with a strong cardinal. Theorem B Det(AQI)⇒there exist type-1 mice and hence inner models with proper classes of strong cardinals where Π1-IND (AQI) is the pointclass o...
متن کاملProjectively Well-Ordered Inner Models
We show that the reals in the minimal iterable inner model having n Woodin cardinals are precisely those which are A,‘+ 2 definable from some countable ordinal. (One direction here is due to Hugh Woodin.) It follows that this model satisfies “There is a A.‘+2 well-order of the reals”. We also describe some other connections between the descriptive set theory of projective sets and inner models ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bulletin of Symbolic Logic
دوره 1 شماره
صفحات -
تاریخ انتشار 1995