Deguelin inhibits epithelial‐to‐mesenchymal transition and metastasis of human non‐small cell lung cancer cells by regulating NIMA‐related kinase 2

نویسندگان

  • Dejian Zhao
  • Wenzheng Han
  • Xia Liu
  • Dawei Cui
  • Yu Chen
چکیده

BACKGROUND Non-small cell lung cancer is a lethal malignancy with a high mortality rate. Deguelin displays an anti-tumor effect and inhibits metastasis in various cancers. The aberrant expression of NIMA-related kinase 2 (NEK2) indicates poor prognosis and induces epithelial-to-mesenchymal transition (EMT) and metastasis processes. However, the underlying mechanism between deguelin and NEK2 has remained elusive. METHODS NSCLC cell lines were treated with deguelin. Wound-healing and invasion assays were applied to study the inhibitory effect of deguelin on NSCLC cells. EMT markers, E-cadherin and Vimentin, were also detected by Western blot. NEK2 protein and messenger RNA expression levels were evaluated when NSCLC cells were treated with different concentrations of deguelin. The effect of NEK2 on NSCLC cell metastasis was evaluated through NEK2 knockdown. To investigate whether deguelin induced EMT by regulating NEK2, we overexpressed NEK2 in both NCI-H520 and SK-MES-1 cell lines, and then used real time-PCR to study the E-cadherin and Vimentin messenger RNA expression in both NSCLC cells. RESULTS Deguelin inhibited migration and invasion processes in NSCLC cell lines and decreased NEK2 expression in a concentration-dependent manner. Furthermore, NEK2 knockdown inhibited NSCLC cell migration and invasion. Finally, overexpressing NEK2 in NCI-H520 and SK-MES-1 cells could restore the inhibition of metastasis induced by deguelin. CONCLUSIONS Deguelin could inhibit EMT and metastasis, while overexpression of NEK2 promotes these processes. Deguelin could decrease NEK2 expression, while NEK2 overexpression could restore deguelin-induced inhibition of metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

Deguelin-induced inhibition of cyclooxygenase-2 expression in human bronchial epithelial cells.

The increased expression of cyclooxygenase (COX)-2 significantly enhances carcinogenesis and inflammatory reactions, and its regulation may be a reasonable target for cancer chemoprevention. We demonstrated previously that deguelin inhibits proliferation of premalignant human bronchial epithelial (HBE) cells, such as 1799 cells and squamous HBE cells, by regulating phosphatidylinositol-3-kinase...

متن کامل

Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line

Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...

متن کامل

Inhibition of hypoxia-induced epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells.

Hypoxia-induced epithelial mesenchymal transition (EMT) is an essential step in cancer metastasis. Luteolin, a flavonoid that is widely distributed in plants, is a novel anticancer agent. However, the mechanism underlying its anticancer effects remains undefined. In this study, for the first time, we demonstrate that luteolin inhibits hypoxia-induced EMT in human non-small cell lung cancer cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017