Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution.

نویسندگان

  • Zheng Fang
  • Yabo Wang
  • Jibin Song
  • Yimin Sun
  • Jiajing Zhou
  • Rong Xu
  • Hongwei Duan
چکیده

We report the development of a highly efficient photocatalytic system by immobilizing high-quality CdS quantum dots and dendritic Pt nanocrystals on thiol-functionalized graphene substrates. We have demonstrated that the use of QDs with compact sizes leads to a dramatically enhanced performance in comparison with their bulk counterparts. Our design allows for systematic examination of the impact of QD sizes and the loading, morphology, and surface coating of the Pt nanocrystal cocatalyst on the H2 evolution activity. It was found that the CdS-Pt binary system has a high photocatalytic efficiency of 1.37 mmol h(-1) for visible light driven H2 evolution, and there was a 30% improvement by introducing the thiolated reduced graphene oxide to form the three-component CdS-Pt-Gcys nanocomposites. The highest H2 evolution rate of 2.15 mmol h(-1) (λ ≥ 420 nm) with a QE of 50.7% was achieved by further photo-annealing of the CdS-Pt-Gcys nanocomposites prior to the photocatalytic reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets

Ni2P has been decorated on CdS nanowires or nanorods for efficient photocatalytic H2 production, whereas the specific surface area remains limited because of the large size. Here, the composites of Cd0.5Zn0.5S quantum dots (QDs) on thin Ni2P porous nanosheets with high specific surface area were constructed for noble metal-free photocatalytic H2 generation. The porous Ni2P nanosheets, which wer...

متن کامل

Semiconductor Nanomaterials in Photocatalytic Bipyridine Reduction and H 2 Generation

Semiconductor Nanomaterials in Photocatalytic Bipyridine Reduction and H2 Generation By Li Yu Semiconductor nanoparticles have been used in the study of proton coupled electron transfer from CdS quantum dots (QDs) to N-heptyl-4,4’-bipyridinium (bPYD) and photocatalytic H2 generation with Pt tipped CdS nanorods (NRs) under alkaline solutions. For the QDs/bPYD system, transient absorption (TA) sp...

متن کامل

Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production.

Highly efficient hydrogen production can be achieved by three-dimensional (3D) architectures of CdS quantum dots (QDs) incorporated in the porous assembly of marigold-like ZnIn2S4 heterostructures coupled with graphene, leading to an efficient electron transfer between them and the enhancement of the ZnIn2S4 photostability. The as-prepared samples were characterized by X-ray diffraction, electr...

متن کامل

Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prep...

متن کامل

Steering Photoelectrons Excited in Carbon Dots into Platinum Cluster Catalyst for Solar‐Driven Hydrogen Production

In composite photosynthetic systems, one most primary promise is to pursue the effect coupling among light harvesting, charge transfer, and catalytic kinetics. Herein, this study designs the reduced carbon dots (r-CDs) as both photon harvesters and photoelectron donors in combination with the platinum (Pt) clusters and fabricated the function-integrated r-CD/Pt photocatalyst through a photochem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 5 20  شماره 

صفحات  -

تاریخ انتشار 2013