Geometric methods for estimation of structured covariances
نویسندگان
چکیده
We consider problems of estimation of structured covariance matrices, and in particular of matrices with a Toeplitz structure. We follow a geometric viewpoint that is based on some suitable notion of distance. To this end, we overview and compare several alternatives metrics and divergence measures. We advocate a specific one which represents the Wasserstein distance between the corresponding Gaussians distributions and show that it coincides with the so-called Bures/Hellinger distance between covariance matrices as well. Most importantly, besides the physically appealing interpretation, computation of the metric requires solving a linear matrix inequality (LMI). As a consequence, computations scale nicely for problems involving large covariance matrices, and linear prior constraints on the covariance structure are easy to handle. We compare this transportation/Bures/Hellinger metric with the maximum likelihood and the Burg methods as to their performance with regard to estimation of power spectra with spectral lines on a representative case study from the literature.1
منابع مشابه
Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملEstimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming
Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...
متن کاملLeast - Squares Approximation of Structured
State covariances of linear systems satisfy certain constraints imposed by the underlying dynamics. These constraints dictate a particular structure of state covariances. However, sample covariances almost always fail to have the required structure. The renewed interest in using state covariances for estimating the power spectra of inputs gives rise to the approximation problem. In this note, t...
متن کاملExtended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1110.3695 شماره
صفحات -
تاریخ انتشار 2011