Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

نویسندگان

  • Yunjun Zhao
  • Jiayan Sun
  • Peng Xu
  • Rui Zhang
  • Laigeng Li
چکیده

Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wood reinforcement of poplar by rice NAC transcription factor.

Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secon...

متن کامل

Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus.

NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional a...

متن کامل

Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.

Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcr...

متن کامل

Functional characterization of poplar wood-associated NAC domain transcription factors.

Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated i...

متن کامل

Vascular-related NAC-domain 7 directly regulates a broad range of genes for xylem vessel differentiation

Background Xylem functions in conduction of water and minerals throughout the plants, and supports the plant body. One of the features of xylem cells is development of secondary wall structure between plasma membrane and (primary) cell wall. Recently, it is expected that knowledge on xylem development can be utilized for application of improvement of the plant biomass, since most portion of woo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 164 2  شماره 

صفحات  -

تاریخ انتشار 2014