Ginkgolide B Inhibits Human Bladder Cancer Cell Migration and Invasion Through MicroRNA-223-3p.
نویسندگان
چکیده
BACKGROUND/AIMS Ginkgolide B (GB) is currently used as an anticancer drug for treatment of some malignant cancers. However, whether it may have therapeutic effects on bladder cancer remains unknown. Here, we studied the effects of GB on bladder cancer cells. METHODS Bladder cells were treated with different doses of GB, and the effects on ZEB1 and microRNA-223-3p (miR-223-3p) were analyzed by RT-qPCR and/or Western blot. Prediction of a regulatory relationship between miR-93 and 3'-UTR of Beclin-1 mRNA was performed by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. RESULTS We found that GB dose-dependently decreased ZEB1 protein, but not mRNA, in bladder cancer cells, resulting in suppression of cell invasion. Moreover, in bladder cancer cells, GB dose-dependently decreased the levels of miR-223-3p, which suppressed the protein translation of ZEB1 through binding to 3'-UTR of ZEB1 mRNA. Overexpression of miR-223-3p decreased ZEB1 protein, while depletion of miR-223-3p increased ZEB1 protein in bladder cancer cells. CONCLUSION GB inhibits bladder cancer cell invasiveness through suppressing ZEB1 protein translation via upregulating miR-223-3p.
منابع مشابه
MicroRNA-223-3p Regulates Ovarian Cancer Cell Proliferation and Invasion by Targeting SOX11 Expression
MicroRNAs (miRNAs) often display different expression in many cancers and other diseases in current research studies. miR-223 expression is upregulated in rheumatoid arthritis. Also, miR-223 expression has been demonstrated to be highly expressed in pancreatic cancer and gastric cancer in comparison with normal tissue. However, whether miR-223 displays different expression in ovarian cancer and...
متن کاملshRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines
Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...
متن کاملMicroRNA-454-3p inhibits cervical cancer cell invasion and migration by targeting c-Met
Increasing evidence has demonstrated that microRNAs (miRNAs) have a crucial role in the initiation and progression of tumors. The present study aimed to investigate the expression and the role of miRNA-454-3p in human cervical cancer. Human cervical cancer cells were transfected with miRNA-454-3p mimics or negative control miRNA. MTT, Transwell and wound healing assays were performed to investi...
متن کامل1,25D3 differentially suppresses bladder cancer cell migration and invasion through the induction of miR-101-3p
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: lo...
متن کاملRegulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): inhibition of bladder cancer cell aggressiveness
In microRNA (miRNA) biogenesis, the guide-strand of miRNA integrates into the RNA induced silencing complex (RISC), whereas the passenger-strand is inactivated through degradation. Analysis of our miRNA expression signature of bladder cancer (BC) by deep-sequencing revealed that microRNA (miR)-145-5p (guide-strand) and miR-145-3p (passenger-strand) were significantly downregulated in BC tissues...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 39 5 شماره
صفحات -
تاریخ انتشار 2016