A Possible New Quantum Algorithm: Arithmetic with Large Integers via the Chinese Remainder Theorem
نویسنده
چکیده
Residue arithmetic is an elegant and convenient way of computing with integers that exceed the natural word size of a computer. The algorithms are highly parallel and hence naturally adapted to quantum computation. The process differs from most quantum algorithms currently under discussion in that the output would presumably be obtained by classical superposition of the output of many identical quantum systems, instead of by arranging for constructive interference in the wave function of a single quantum computer.
منابع مشابه
Modular Integer Arithmetic 1 Christoph Schwarzweller Institute of Computer
In this article we show the correctness of integer arithmetic based on Chinese Remainder theorem as described e.g. in [11]: Integers are transformed to finite sequences of modular integers, on which the arithmetic operations are performed. Retransformation of the results to the integers is then accomplished by means of the Chinese Remainder theorem. The method presented is a typical example for...
متن کاملFast Parallel Garner Algorithm for Chinese Remainder Theorem
This paper presents a fast parallel garner algorithm for Chinese remainder theorem. The variables in garner algorithm are divided into public parameters that are constants for fixed module and private parameters that represent random input integers. We design the parallel garner algorithm by analyzing the data dependencies of these arithmetic operations for computing public variables and privat...
متن کاملCourse MA 2 C 02 , Hilary Term 2010
5 Introduction to Number Theory and Cryptography 72 5.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 72 5.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 72 5.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 73 5.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 The Fundamental Theorem of Arithmetic . . . . . . ...
متن کاملCourse MA 2 C 02 , Hilary Term 2013
9 Introduction to Number Theory 63 9.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 63 9.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 63 9.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 64 9.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 67 9.5 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . 68 9....
متن کاملCourse Ma2c03, Hilary Term 2014 Section 9: Introduction to Number Theory and Cryptography
9 Introduction to Number Theory 168 9.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 168 9.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 168 9.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 169 9.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.5 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . ...
متن کامل