A surface-bound molecule that undergoes optically biased Brownian rotation.

نویسندگان

  • James A Hutchison
  • Hiroshi Uji-i
  • Ania Deres
  • Tom Vosch
  • Susana Rocha
  • Sibylle Müller
  • Andreas A Bastian
  • Jörg Enderlein
  • Hassan Nourouzi
  • Chen Li
  • Andreas Herrmann
  • Klaus Müllen
  • Frans De Schryver
  • Johan Hofkens
چکیده

Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors, gyroscopes and valves, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism in which photoexcitation of the rotor strongly inhibits its diffusion rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemistry in nanometer-wide electrochemical cells.

The electrochemical properties of an electrochemical cell defined by two concentric spherical electrodes, separated by a 1 to 20-nm-wide gap, and a freely diffusing electrochemically active molecule (e.g., ferrocene) have been investigated by coupling of Brownian dynamics simulations with long-range electron-transfer probability values. The simulation creates a trajectory of a single molecule a...

متن کامل

Mixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study

In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...

متن کامل

Thermal tweezers for surface manipulation with nanoscale resolution

In this letter, we demonstrate that random Brownian forces can be used for effective trapping and manipulation of nanoparticles and molecules on surfaces in the presence of strong temperature modulation. Substantial (~ 2 orders of magnitude) increase in the modulation of particle concentration (trapping efficiency) compared to thermophoresis in a bulk medium is predicted and explained by a peri...

متن کامل

A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data

Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics.

Molecular dynamics simulations of the response to oscillating electric field elicited from an altitudinal dipolar molecular rotor mounted on the Au(111) surface and previously studied experimentally in static fields show unidirectional rotation in one of the three pairs of conformational enantiomers. The simulations are based on the universal force field and take into account electronic frictio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2014