Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods.
نویسندگان
چکیده
Methods of generating multiple viewpoint projection holograms of three-dimensional (3-D) realistic objects illuminated by incoherent white light are reviewed in this paper. Using these methods, it is possible to obtain holograms with a simple digital camera, operating in regular light conditions. Thus, most disadvantages characterizing conventional digital holography, namely the need for a powerful, highly coherent laser and extreme stability of the optical system, are avoided. The proposed holographic processes are composed of two stages. In the first stage, regular intensity-based images of the 3-D scene are captured from multiple points of view by a simple digital camera. In the second stage, the acquired projections are digitally processed to yield the complex digital hologram of the 3-D scene, where no interference is involved in the process. For highly reflecting 3-D objects, the resulting hologram is equivalent to an optical hologram of the objects recorded from the central point of view. We first review various methods to acquire the multiple viewpoint projections. These include the use of a microlens array and a macrolens array, as well as digitally generated projections that are not acquired optically. Next, we show how to digitally process the acquired projections to Fourier, Fresnel, and image holograms. Additionally, to obtain certain advantages over the known types of holograms, the proposed hybrid optical-digital process can yield novel types of holograms such as the modified Fresnel hologram and the protected correlation hologram. The prospective goal of these methods is to facilitate the design of a simple and portable digital holographic camera that can be useful for a variety of practical applications, including 3-D video acquisition and various types of biomedical imaging. We review several of these applications to signify the advantages of multiple viewpoint projection holography.
منابع مشابه
Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملFlexible calibration technique for fringe-projection-based three-dimensional imaging.
Fringe projection profilometry (FPP) has evolved dramatically, with many highly demanded features for three-dimensional (3D) imaging, such as high accuracy, easy implementation, and capability of measuring multiple objects with complex shapes. A vital component for an FPP-based 3D imaging system is the calibration process. The existing calibration methods lack the ability to be flexibly compati...
متن کاملReview of digital holographic microscopy for three-dimensional profiling and tracking
Digital holographic microscopy (DHM) is a potent tool to perform three-dimensional imaging and tracking. We present a review of the state-of-the-art of DHM for three-dimensional profiling and tracking with emphasis on DHM techniques, reconstruction criteria for three-dimensional profiling and tracking, and their applications in various branches of science, including biomedical microscopy, parti...
متن کاملThree-dimensional computational holographic imaging and recognition using independent component analysis
We present computational holographic three-dimensional imaging and automated object recognition based on independent component analysis (ICA). Three-dimensional sensing of the scene is performed by computational holographic imaging of the objects using phase-shifting digital holography. We used principal components analysis to reduce data dimension and ICA to recognize the three-dimensional obj...
متن کاملProjection-type see-through holographic three-dimensional display
Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 48 34 شماره
صفحات -
تاریخ انتشار 2009