Stability Results for Some Functional Equations of Quadratic-type
نویسنده
چکیده
We present some theorems of stability, in the Hyers-UlamRassias sense, for functional equations of quadratic-type, extending the results from [2], [8], [16], [19] and [20]. There are used both the direct and the fixed point methods. 2000 Mathematics Subject Classification: 39B52, 39B62, 39B82, 47H09.
منابع مشابه
Quadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملAsymptotic aspect of quadratic functional equations and super stability of higher derivations in multi-fuzzy normed spaces
In this paper, we introduce the notion of multi-fuzzy normed spaces and establish an asymptotic behavior of the quadratic functional equations in the setup of such spaces. We then investigate the superstability of strongly higher derivations in the framework of multi-fuzzy Banach algebras
متن کامل2-Banach stability results for the radical cubic functional equation related to quadratic mapping
The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...
متن کاملOn the stability of fuzzy set-valued functional equations
Abstract: We introduce some fuzzy set-valued functional equations, i.e. the generalized Cauchy type (in n variables), the Quadratic type, the Quadratic-Jensen type, the Cubic type and the Cubic-Jensen type fuzzy set-valued functional equations and discuss the Hyers-Ulam-Rassias stability of the above said functional equations. These results can be regarded as an important extension of stability...
متن کامل