Hypothesis Testing for Parsimonious Gaussian Mixture Models

نویسندگان

  • Antonio Punzo
  • Ryan P. Browne
  • Paul D. McNicholas
چکیده

Gaussian mixture models with eigen-decomposed covariance structures make up the most popular family of mixture models for clustering and classification, i.e., the Gaussian parsimonious clustering models (GPCM). Although the GPCM family has been used for almost 20 years, selecting the best member of the family in a given situation remains a troublesome problem. Likelihood ratio tests are developed to tackle this problems. These likelihood ratio tests use the heteroscedastic model under the alternative hypothesis but provide much more flexibility and real-world applicability than previous approaches that compare the homoscedastic Gaussian mixture versus the heteroscedastic one. Along the way, a novel maximum likelihood estimation procedure is developed for two members of the GPCM family. Simulations show that the χ2 reference distribution gives reasonable approximation for the LR statistics only when the sample size is considerable and when the mixture components are well separated; accordingly, following Lo (2008), a parametric bootstrap is adopted. Furthermore, by generalizing the idea of Greselin and Punzo (2013) to the clustering context, a closed testing procedure, having the defined likelihood ratio tests as local tests, is introduced to assess a unique model in the general family. The advantages of this likelihood ratio testing procedure are illustrated via an application to the well-known Iris data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirichlet Process Parsimonious Mixtures for clustering

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtur...

متن کامل

Parsimonious Gaussian mixture models

Parsimonious Gaussian mixture models are developed using a latent Gaussian model which is closely related to the factor analysis model. These models provide a unified modeling framework which includes the mixtures of probabilistic principal component analyzers and mixtures of factor of analyzers models as special cases. In particular, a class of eight parsimonious Gaussian mixture models which ...

متن کامل

Independent Component Analysis using Gaussian Mixture Models

This paper discusses a method for performing independent component analysis exploiting Gaussian mixture models (GMMs). Previously most techniques that combine these methods have used GMMs to model the source signals. This paper considers a parsimonious method for modelling the observed signals. The GMM is fitted to the observed data using a modified version of the expectation maximisation algor...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Bayesian non-parametric parsimonious clustering

This paper proposes a new Bayesian non-parametric approach for clustering. It relies on an infinite Gaussian mixture model with a Chinese Restaurant Process (CRP) prior, and an eigenvalue decomposition of the covariance matrix of each cluster. The CRP prior allows to control the model complexity in a principled way and to automatically learn the number of clusters. The covariance matrix decompo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014