Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ.
نویسندگان
چکیده
Vibrio fischeri ES114 is an isolate representing the specific bacterial light organ symbiont of the squid Euprymna scolopes. An interesting feature of this strain of V. fischeri is that it is visibly luminous within the light organ of the squid host but is nonluminous when grown under standard laboratory conditions. Luminescence can be restored in laboratory culture, however, by the addition of autoinducer, a species-specific inducer of the V. fischeri luminescence (lux) genes. Most other isolates of V. fischeri produce autoinducer in sufficient quantities to induce luminescence in laboratory culture. We have cloned an 8.8-kb DNA fragment from V. fischeri ES114 that encodes all of the functions necessary for luminescence in Escherichia coli in the absence of exogenous autoinducer. This DNA contains both of the recognized V. fischeri lux regulatory genes, one of which (luxI) directs E. coli to synthesize autoinducer. The organization of the individual lux genes within this DNA fragment appears to be the same as that in the other strains of V. fischeri studied; the restriction map of the V. fischeri ES114 lux DNA has diverged substantially, however, from the largely conserved maps of V. fischeri MJ1 and ATCC 7744. Although E. coli containing the V. fischeri ES114 lux DNA synthesizes considerable amounts of autoinducer, V. fischeri ES114 synthesizes autoinducer only in small amounts, even when transcription of the lux genes, including luxI, is activated by the addition of exogenous autoinducer. Nonetheless, transconjugants of V. fischeri ES114 that contain multicopy plasmids bearing the ES114 lux genes synthesize sufficient autoinducer to induce luminescence. These results suggest that V. fischeri ES11r does not lack a functional luxl, nor is it deficient in the ability to synthesize metabolic precursors for autoinducer synthesis.
منابع مشابه
In silico structural analysis of quorum sensing genes in Vibrio fischeri
Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...
متن کاملQuorum Sensing in the Squid-Vibrio Symbiosis
Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, qu...
متن کاملLitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization.
Vibrio fischeri is the bacterial symbiont within the light-emitting organ of the sepiolid squid Euprymna scolopes. Upon colonizing juvenile squids, bacterial symbionts grow on host-supplied nutrients, while providing a bioluminescence that the host uses during its nocturnal activities. Mutant bacterial strains that are unable to emit light have been shown to be defective in normal colonization....
متن کاملBacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis
The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that enco...
متن کاملVibrio fischeri LuxS and AinS: comparative study of two signal synthases.
Vibrio fischeri possesses two acyl-homoserine lactone quorum-sensing systems, ain and lux, both of which are involved in the regulation of luminescence gene expression and are required for persistent colonization of the squid host, Euprymna scolopes. We have previously demonstrated that the ain system induces luminescence at cell densities that precede lux system activation. Our data suggested ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 174 13 شماره
صفحات -
تاریخ انتشار 1992