Fast and Slow Gating Relaxations in the Muscle Chloride Channel Clc-1

نویسندگان

  • Alessio Accardi
  • Michael Pusch
چکیده

Gating of the muscle chloride channel CLC-1 involves at least two processes evidenced by double-exponential current relaxations when stepping the voltage to negative values. However, there is little information about the gating of CLC-1 at positive voltages. Here, we analyzed macroscopic gating of CLC-1 over a large voltage range (from -160 to +200 mV). Activation was fast at positive voltages but could be easily followed using envelope protocols that employed a tail pulse to -140 mV after stepping the voltage to a certain test potential for increasing durations. Activation was biexponential, demonstrating the presence of two gating processes. Both time constants became exponentially faster at positive voltages. A similar voltage dependence was also seen for the fast gate time constant of CLC-0. The voltage dependence of the time constant of the fast process of CLC-1, tau(f), was steeper than that of the slow one, tau(s) (apparent activation valences were z(f) approximately -0. 79 and z(s) approximately -0.42) such that at +200 mV the two processes became kinetically distinct by almost two orders of magnitude (tau(f) approximately 16 micros, tau(s) approximately 1 ms). This voltage dependence is inconsistent with a previously published gating model for CLC-1 (Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rüdel. 1996. Biophys. J. 71:695-706). The kinetic difference at 200 mV allowed us to separate the steady state open probabilities of the two processes assuming that they reflect two parallel (not necessarily independent) gates that have to be open simultaneously to allow ion conduction. Both open probabilities could be described by Boltzmann functions with gating valences around one and with nonzero "offsets" at negative voltages, indicating that the two "gates" never close completely. For comparison with single channel data and to correlate the two gating processes with the two gates of CLC-0, we characterized their voltage, pH(int), and [Cl](ext) dependence, and the dominant myotonia inducing mutation, I290M. Assuming a double-barreled structure of CLC-1, our results are consistent with the identification of the fast and slow gating processes with the single-pore and the common-pore gate, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and slow gating of CLC-1: differential effects of 2-(4-chlorophenoxy) propionic acid and dominant negative mutations.

Our knowledge about ClC-1 muscle chloride channel gating, previously gained from single-channel recording and noise analysis, provides a theoretical basis for further analysis of macroscopic currents. In the present study, we propose a simple method of calculation of open probabilities (P(o)) of fast and slow gates from the relative amplitudes of ClC-1 inward current components. With this metho...

متن کامل

Temperature Dependence of Fast and Slow Gating Relaxations of ClC-0 Chloride Channels

The chloride channel from the Torpedo electric organ, ClC-0, is the best studied member of a large gene-family (Jentsch, T.J. 1996. Curr. Opin. Neurobiol. 6:303-310.). We investigate the temperature dependence of both the voltage- and chloride-dependent fast gate and of the slow gate of the "double-barreled" ClC-0 expressed in Xenopus oocytes. Kinetics of the fast gate exhibit only a moderate t...

متن کامل

The myotonia congenita mutation A331T confers a novel hyperpolarization-activated gate to the muscle chloride channel ClC-1.

Mutations in the muscle chloride channel gene CLCN1 cause myotonia congenita, an inherited disorder of skeletal muscle excitability leading to a delayed relaxation after muscle contraction. Here, we examine the functional consequences of a novel disease-causing mutation that predicts the substitution of alanine by threonine at position 331 (A331T) by whole-cell patch-clamp recording of recombin...

متن کامل

Involvement of Helices at the Dimer Interface in ClC-1 Common Gating

ClC-1 is a dimeric, double-pored chloride channel that is present in skeletal muscle. Mutations of this channel can result in the condition myotonia, a muscle disorder involving increased muscle stiffness. It has been shown that the dominant form of myotonia often results from mutations that affect the so-called slow, or common, gating process of the ClC-1 channel. Mutations causing dominant my...

متن کامل

ClC-1 chloride channels: state-of-the-art research and future challenges

The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl(-) homeostasis is crucial for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2000