Vector representation of graph domination
نویسنده
چکیده
We study a function on graphs, denoted by Gamma , representing vectorially the domination number of a graph, in a way similar to that in which the Lovász Theta function represents the independence number of a graph. This function is a lower bound on the homological connectivity of the independence complex of the graph, and hence is of value in studying matching problems by topological methods. Not much is known at present about the Γ function, in particular there is no known procedure for its computation for general graphs. In this paper we compute the precise value of Gamma for trees and cycles, and to achieve this we prove new lower and upper bounds on Gamma, formulated in terms of known domination and algebraic parameters of the graph. We also use the Gamma function to prove a fractional version of a strengthening of Ryser's conjecture.
منابع مشابه
Domination Numbers of Q-analogues of Kneser Graphs
We investigate the domination number and total domination number of the graph K q (n; k) whose vertices are all the k-subspaces of an n-dimensional vector space over a eld with q elements and whose edges are the pairs fU; Wg of vertices such that U \ W = f0g. Bounds are obtained in general and exact results are obtained for n k 2 +k?1 and in other cases when q is suuciently large relative to n ...
متن کاملHypo-efficient domination and hypo-unique domination
For a graph $G$ let $gamma (G)$ be its domination number. We define a graph G to be (i) a hypo-efficient domination graph (or a hypo-$mathcal{ED}$ graph) if $G$ has no efficient dominating set (EDS) but every graph formed by removing a single vertex from $G$ has at least one EDS, and (ii) a hypo-unique domination graph (a hypo-$mathcal{UD}$ graph) if $G$ has at least two minimum dominating sets...
متن کاملOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملMagdalena Lemańska WEAKLY CONVEX AND CONVEX DOMINATION NUMBERS
Two new domination parameters for a connected graph G: the weakly convex domination number of G and the convex domination number of G are introduced. Relations between these parameters and the other domination parameters are derived. In particular, we study for which cubic graphs the convex domination number equals the connected domination number.
متن کاملTotal domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 70 شماره
صفحات -
تاریخ انتشار 2012