MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases.

نویسندگان

  • Julia A Vorholt
  • Marina G Kalyuzhnaya
  • Christoph H Hagemeier
  • Mary E Lidstrom
  • Ludmila Chistoserdova
چکیده

Novel methylene tetrahydromethanopterin (H4MPT) dehydrogenase enzymes, named MtdC, were purified after expressing in Escherichia coli genes from, respectively, Gemmata sp. strain Wa1-1 and environmental DNA originating from unidentified microbial species. The MtdC enzymes were shown to possess high affinities for methylene-H4MPT and NADP but low affinities for methylene tetrahydrofolate or NAD. The substrate range and the kinetic properties revealed by MtdC enzymes distinguish them from the previously characterized bacterial methylene-H4MPT dehydrogenases, MtdA and MtdB. While revealing higher sequence similarity to MtdA enzymes, MtdC enzymes appear to fulfill a function homologous to the function of MtdB, as part of the H4MPT-linked pathway for formaldehyde oxidation/detoxification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.

An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the mtdA gene product. The purified enzyme catalyzed the dehydrogen...

متن کامل

Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.

Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we...

متن کامل

Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1.

The methylotroph Methylobacterium extorquens AM1 oxidizes methanol and methylamine to formaldehyde and subsequently to formate, an intermediate that serves as the branch point between assimilation (formation of biomass) and dissimilation (oxidation to CO₂). The oxidation of formaldehyde to formate is dephosphotetrahydromethanopterin (dH₄MPT) dependent, while the assimilation of carbon into biom...

متن کامل

Tetrahydromethanopterin, a carbon carrier in methanogenesis.

Evidence obtained by 13C NMR spectroscopy indicates that tetrahydromethanopterin (H4MPT) serves as a carbon carrier for C1 units at the methine, methylene, and methyl levels of oxidation. All three derivatives of H4MPT served as substrates for methanogenesis by cell extracts under a hydrogen atmosphere; in each instance, methane evolved at a rate comparable to that obtained when 2-(methylthio)e...

متن کامل

Tetrahydromethanopterin-dependent methanogenesis from non-physiological C1 donors in Methanobacterium thermoautotrophicum.

Methanogenesis from the non-physiological C1 donors thioproline, thiazolidine, hexamethylenetetramine, formaldehyde (HCHO), and HOCH2-S-coenzyme M (CoM) was catalyzed by cell extracts of Methanobacterium thermoautotrophicum under a hydrogen atmosphere. Tetrahydromethanopterin (H4MPT) and HS-CoM were required in the reaction mixture. The non-physiological compounds were found to be in chemical e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 17  شماره 

صفحات  -

تاریخ انتشار 2005