Integration of Single-view Graphs with Diffusion of Tensor Product Graphs for Multi-view Spectral Clustering
نویسندگان
چکیده
Multi-view clustering takes diversity of multiple views (representations) into consideration. Multiple views may be obtained from various sources or different feature subsets and often provide complementary information to each other. In this paper, we propose a novel graph-based approach to integrate multiple representations to improve clustering performance. While original graphs have been widely used in many existing multi-view clustering approaches, the key idea of our approach is to integrate multiple views by exploring higher order information. In particular, given graphs constructed separately from single view data, we build cross-view tensor product graphs (TPGs), each of which is a Kronecker product of a pair of single-view graphs. Since each cross-view TPG captures higher order relationships of data under two different views, it is no surprise that we obtain more reliable similarities. We linearly combine multiple cross-view TPGs to integrate higher order information. Efficient graph diffusion process on the fusion TPG helps to reveal the underlying cluster structure and boosts the clustering performance. Empirical study shows that the proposed approach outperforms state-of-the-art methods on benchmark datasets.
منابع مشابه
Distance-based topological indices of tensor product of graphs
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملA Note on Tensor Product of Graphs
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
متن کاملWiener Polarity Index of Tensor Product of Graphs
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...
متن کاملLearning Social Circles in Ego Networks based on Multi-View Social Graphs
Automatic social circle detection in ego-networks is becoming a fundamentally important task for social network analysis, which can be used for privacy protection or interest group recommendation. So far, most studies focused on how to detect overlapping circles or how to perform detection using both network structure and its node profiles. This paper asks an orthogonal research question: how t...
متن کامل