Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009
نویسندگان
چکیده
BACKGROUND Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels in future transportation and energy production. However, current industrial hydrogen production processes, such as steam reforming of methane, contribute significantly to the greenhouse effect. Therefore alternative methods, in particular the use of fermentative microorganisms, have attracted scientific interest in recent years. However the low overall yield obtained is a major challenge in biological H2 production. Thus, a thorough and detailed understanding of the relationships between genome content, gene expression patterns, pathway utilisation and metabolite synthesis is required to optimise the yield of biohydrogen production pathways. RESULTS In this study transcriptomic and proteomic analyses of the hydrogen-producing bacterium Clostridium butyricum CWBI 1009 were carried out to provide a biomolecular overview of the changes that occur when the metabolism shifts to H2 production. The growth, H2-production, and glucose-fermentation profiles were monitored in 20 L batch bioreactors under unregulated-pH and fixed-pH conditions (pH 7.3 and 5.2). Conspicuous differences were observed in the bioreactor performances and cellular metabolisms for all the tested metabolites, and they were pH dependent. During unregulated-pH glucose fermentation increased H2 production was associated with concurrent strong up-regulation of the nitrogenase coding genes. However, no such concurrent up-regulation of the [FeFe] hydrogenase genes was observed. During the fixed pH 5.2 fermentation, by contrast, the expression levels for the [FeFe] hydrogenase coding genes were higher than during the unregulated-pH fermentation, while the nitrogenase transcripts were less abundant. The overall results suggest, for the first time, that environmental factors may determine whether H2 production in C. butyricum CWBI 1009 is mediated by the hydrogenases and/or the nitrogenase. CONCLUSIONS This work, contributing to the field of dark fermentative hydrogen production, provides a multidisciplinary approach for the investigation of the processes involved in the molecular H2 metabolism of clostridia. In addition, it lays the groundwork for further optimisation of biohydrogen production pathways based on genetic engineering techniques.
منابع مشابه
Mesophilic biohydrogen production by Clostridium butyricum CWBI 1009 in 1 trickling biofilter reactor
14 This study investigates the mesophilic biohydrogen production from glucose using a strictly 15 anaerobic strain, Clostridium butyricum CWBI1009, immobilized in a trickling bed sequenced 16 batch reactor (TBSBR) packed with a Lantec HD Q-PAC ® packing material (132 ft2/ft3 specific 17 surface). The reactor was operated for 62 days. The main parameters measured here were 18 hydrogen compositio...
متن کاملThe Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [F...
متن کاملAdding value to renewables: a one pot process combining microbial cells and hydrogen transfer catalysis to utilise waste glycerol from biodiesel production.
Waste glycerol was converted to secondary amines in a one pot reaction, using Clostridium butyricum and catalytic hydrogen transfer-mediated amination.
متن کاملNitrogenase, Hydrogenase and Hydrogen Production by Cyanobacteria
2 Summary Hydrogen has the potential to provide a clean, storable, transportable and renewable source of energy that can meet the need for power throughout the world. Biological production of hydrogen, especially by photosynthetic microorganisms that use sunlight for energy, provides a renewable source of hydrogen for fuel cells. Nitrogen-fixing cyanobacteria can produce hydrogen in an aerobic ...
متن کاملI-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming
a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...
متن کامل