Mazur-Ulam Theorem

نویسنده

  • Artur Kornilowicz
چکیده

The notation and terminology used in this paper have been introduced in the following papers: [19], [18], [4], [5], [20], [11], [10], [14], [17], [1], [6], [16], [24], [25], [21], [13], [12], [22], [2], [9], [8], [3], and [7]. For simplicity, we use the following convention: E, F , G are real normed spaces, f is a function from E into F , g is a function from F into G, a, b are points of E, and t is a real number. Let us note that I is closed. Next we state four propositions: (1) DYADIC is a dense subset of I. (2) DYADIC = [0, 1]. (3) a+ a = 2 · a. (4) (a+ b)− b = a. Let A be an upper bounded real-membered set and let r be a non negative real number. Observe that r ◦A is upper bounded. Let A be an upper bounded real-membered set and let r be a non positive real number. Note that r ◦A is lower bounded. Let A be a lower bounded real-membered set and let r be a non negative real number. Observe that r ◦A is lower bounded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mazur-Ulam theorem in probabilistic normed groups

In this paper, we give a probabilistic counterpart of  Mazur-Ulam theorem  in probabilistic normed groups. We show, under some conditions, that every surjective isometry between two probabilistic normed groups is a homomorphism.

متن کامل

A new perspective to the Mazur-Ulam problem in $2$-fuzzy $2$-normed linear spaces

In this paper, we introduce the concepts of $2$-isometry, collinearity, $2$%-Lipschitz mapping in $2$-fuzzy $2$-normed linear spaces. Also, we give anew generalization of the Mazur-Ulam theorem when $X$ is a $2$-fuzzy $2$%-normed linear space or $Im (X)$ is a fuzzy $2$-normed linear space, thatis, the Mazur-Ulam theorem holds, when the $2$-isometry mapped to a $2$%-fuzzy $2$-normed linear space...

متن کامل

A Local Mazur-ulam Theorem

We prove a local version of the Mazur-Ulam theorem.

متن کامل

ar X iv : 0 71 0 . 01 07 v 1 [ m at h . FA ] 3 0 Se p 20 07 A MAZUR – ULAM THEOREM IN NON - ARCHIMEDEAN NORMED SPACES

The classical Mazur–Ulam theorem which states that every sur-jective isometry between real normed spaces is affine is not valid for non-Archimedean normed spaces. In this paper, we establish a Mazur–Ulam theorem in the non-Archimedean strictly convex normed spaces.

متن کامل

Characterizations on the Mazur-Ulam theorem in non-Archimedean fuzzy n-normed spaces

We investigate a notion of non-Archimedean fuzzy anti-n-normed spaces and prove the Mazur-Ulam theorem in the spaces. AMS subject classification: primary 46S10; secondary 47S10; 26E30; 12J25.

متن کامل

On the Mazur–Ulam theorem in fuzzy normed spaces

In this paper, we establish the Mazur–Ulam theorem in the fuzzy strictly convex real normed spaces. Mathematics Subject Classification. Primary 46S40; Secondary 39B52, 39B82, 26E50, 46S50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Formalized Mathematics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2011