Expansion complexes for finite subdivision rules
نویسنده
چکیده
This paper develops the basic theory of conformal structures on finite subdivision rules. The work depends heavily on the use of expansion complexes, which are defined and discussed in detail. It is proved that a finite subdivision rule with bounded valence and mesh approaching 0 is conformal (in the combinatorial sense) if there is a partial conformal structure on the model subdivision complex with respect to which the subdivision map is conformal. This gives a new approach to the difficult combinatorial problem of determining when a finite subdivision rule is conformal.
منابع مشابه
Expansion Complexes for Finite Subdivision Rules Ii
This paper gives applications of earlier work of the authors on the use of expansion complexes for studying conformality of finite subdivision rules. The first application is that a one-tile rotationally invariant finite subdivision rule (with bounded valence and mesh approaching 0) has an invariant conformal structure, and hence is conformal. The paper next considers one-tile single valence fi...
متن کاملConstructing Subdivision Rules from Rational Maps
This paper deepens the connections between critically finite rational maps and finite subdivision rules. The main theorem is that if f is a critically finite rational map with no periodic critical points, then for any sufficiently large integer n the iterate f is the subdivision map of a finite subdivision rule. We are interested here in connections between finite subdivision rules and rational...
متن کاملCombinatorially Regular Polyomino Tilings
Let T be a regular tiling of R which has the origin 0 as a vertex, and suppose that φ : R → R is a homeomorphism such that i) φ(0) = 0, ii) the image under φ of each tile of T is a union of tiles of T , and iii) the images under φ of any two tiles of T are equivalent by an orientation-preserving isometry which takes vertices to vertices. It is proved here that there is a subset Λ of the vertice...
متن کاملClassification of Subdivision Rules for Geometric Groups of Low Dimension
Subdivision rules create sequences of nested cell structures on CWcomplexes, and they frequently arise from groups. In this paper, we develop several tools for classifying subdivision rules. We give a criterion for a subdivision rule to represent a Gromov hyperbolic space, and show that a subdivision rule for a hyperbolic group determines the Gromov boundary. We give a criterion for a subdivisi...
متن کاملFinite Subdivision Rules
We introduce and study finite subdivision rules. A finite subdivision rule is a finite list of instructions which determines a subdivision of a given planar tiling. Given a finite subdivision rule and a planar tiling associated to it, we obtain an infinite sequence of tilings by recursively subdividing the given tiling. We wish to determine when this sequence of tilings is conformal in the sens...
متن کامل