Study of the Precipitation Hardening Behaviour and Intergranular Corrosion of Al-Mg-Si Alloys with Differing Si Contents
نویسندگان
چکیده
The effects of Si addition on the precipitation hardening behaviour and evolution of intergranular corrosion (IGC) of Al-Mg-Si alloys were investigated using hardness tests, scanning electron microscopy (SEM), potentiodynamic polarization measurements, and high-resolution transmission electron microscopy (HRTEM). With an increase of the Si content, the peak hardness of the Al-Mg-Si alloys considerably increased by enhancing the density of the β” (Mg5Si6) phase inside the grains. The microstructures affecting the IGC performance consisted of MgSi particles, Si particles, Al-Fe-Mn-Si intermetallics, and the precipitate-free zone (PFZ). The IGC susceptibility of the Al-Mg-Si alloys was mainly attributed to the high electrochemical potential difference between the MgSi particles and solute-depleted zones. Excess Si improved the IGC susceptibility of the alloys, mainly due to an increase of the grain boundary MgSi precipitates. Furthermore, the evolution of the IGC process was discussed in detail.
منابع مشابه
THE EFFECT OF AGING ON THE CLUSTERING AND PRECIPITATION PROCESS IN Al-Mg-Si ALLOYS
The dependence of the mechanism of age hardening in Al-Mg-Si alloys on their Si content, the pre-aging conditions and addition of Cu has been investigated. For this purpose, the solute clusters and the metastable precipitates in aged Al-Mg-Si alloys have been characterized by a three dimensional atom probe (3DAP) and transmission electron microscopy (TEM). Atom probe analysis results have revea...
متن کاملInfluence of Silicon, Carbon and Phosphorus on Intergranular Corrosion of High Purity Austenitic Stainless Steels Under Transpassive Conditions
Precipitate-free Fe-Cr-Ni f.c.c. alloys exhibit strong intergranular corrosion in acid solutions at electrochemical potentials from the transpassivity range. Segregation of impurity atoms to grain boundaries is generally considered to be responsible for this specific kind of localized damage. A study of the influence of silicon, phosphon~s and carbon on the intergranular transpassive corrosion ...
متن کاملINFLUENCE OF THE SELECTED STRUCTURAL PARAMETER ON A DEPTH OF INTERGRANULAR CORROSION OF Al-Si7-Mg0,3 ALUMINUM ALLOY
L. Bernat, Poznan University of Technology, Faculty of Mechanical Engineering and Management, Division of Foundry, Poznan, Poland The paper presents an influence of the Dendrite Arm Spacing (DAS) microstructure parameter on the intergranular corrosion of AlSi7Mg aluminum alloy. The samples were subjected to the corrosion process for: 2,5; 12; 24; 48 and 96 hours in NaCl + HCl + H2O solution. It...
متن کاملStudy of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys
The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...
متن کامل