A polyhedral study on chance constrained program with random right-hand side

نویسندگان

  • Ming Zhao
  • Kai Huang
  • Bo Zeng
چکیده

The essential structure of the mixed–integer programming formulation for chance–constrained program (CCP) with stochastic right–hand side is the intersection of multiple mixing sets with a 0− 1 knapsack. To improve our computational capacity on CCP, an underlying substructure, the (single) mixing set with a 0 − 1 knapsack, has received substantial attentions recently. In this study, we first present a family of strong inequalities that subsumes known facet-defining ones for that single mixing set. Due to the flexibility of our generalized inequalities, we develop a new separation heuristic that has a complexity much less than existing one and guarantees generated cutting planes are facet–defining for the polyhedron of CCP. Then, we study lifting and superadditive lifting on knapsack cover inequalities, and provide an implementable procedure on deriving another family of strong inequalities for the single mixing set. Finally, different from the traditional approach that aggregates original constraints to investigate polyhedral implications due to their interactions, we propose a novel blending procedure that produces strong valid inequalities for CCP by integrating those derived from individual mixing sets. We show that, under certain conditions, they are the first type of facet-defining inequalities describing intersection of multiple mixing sets, and design an efficient separation heuristic for implementation. In the computational experiments, we perform a systematic study and illustrate the efficacy of the proposed inequalities on solving chance constrained static probabilistic lot-sizing problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chance Constrained Programming Problem under Different Fuzzy Distributions

This paper develops a solution method for Chance Constrained Programming problem, where the random variable in the right hand side of the chance constraints follows different fuzzy distributions. The methodology is verified through numerical examples.

متن کامل

A Chance Constrained Multiple Objective Goal Programming Model of Fuzzy QFD and FMEA: Model Development

There are varieties of QFD combination forms available that can help management to choose the right model for his/her types of problem. The proposed MOCC-QFD-FMEA model is a right model to include variety of objectives as well as the risk factors into the model of the problem. Due to the fact that the model also takes into consideration the concept of Fuzzy set, it further allows management...

متن کامل

DATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH

In this paper, we deal with fuzzy random variables for inputs andoutputs in Data Envelopment Analysis (DEA). These variables are considered as fuzzyrandom flat LR numbers with known distribution. The problem is to find a method forconverting the imprecise chance-constrained DEA model into a crisp one. This can bedone by first, defuzzification of imprecise probability by constructing a suitablem...

متن کامل

A Chance-Constrained DEA model with random input and output data:Considering maintenance groups of Iranian Aluminum Company

In this paper, we use an input oriented chance-constrained DEA model withrandom inputs and outputs. A super-eciency model with chance constraintsis used for ranking. However, for convenience in calculations a non-linear deterministicequivalent model is obtained to solve the models. The non-linearmodel is converted into a model with quadratic constraints to solve the nonlineardeterministic model...

متن کامل

A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with finite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to find provably good solutions in certain very special cases. Our approach uses both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2017