Finding and identifying simple objects underwater with active electrosense

نویسندگان

  • Yang Bai
  • James Snyder
  • Michael A. Peshkin
  • Malcolm A. MacIver
چکیده

Active electrosense is used by some fish for the sensing of nearby objects by means of the perturbations the objects induce in a self-generated electric field. As with echolocation (sensing via perturbations of an emitted acoustic field) active electrosense is particularly useful in environments where darkness, clutter or turbidity makes vision ineffective. Work on engineered variants of active electrosense is motivated by the need for sensors in underwater systems that function well at short range and where vision-based approaches can be problematic, as well as to aid in understanding the computational principles of biological active electrosense. Prior work in robotic active electrosense has focused on tracking and localization of spherical objects. In this study, we present an algorithm for estimating the size, shape, orientation, and location of ellipsoidal objects, along with experimental results. The algorithm is implemented in a robotic active electrosense system whose basic approach is similar to biological active electrosense systems, including the use of movement as part of sensing. At a range up to ’20 cm, or about half the length of the robot, the algorithm localizes spheroids that are one-tenth the length of the robot with accuracy of better than 1 cm for position and 5 in orientation. The algorithm estimates object size and length-to-width ratio with an accuracy of around 10%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human-in-the-loop active electrosense.

Active electrosense is a non-visual, short range sensing system used by weakly electric fish, enabling such fish to locate and identify objects in total darkness. Here we report initial findings from the use of active electrosense for object localization during underwater teleoperation with a virtual reality (VR) head-mounted display (HMD). The advantage of electrolocating with a VR system is t...

متن کامل

Active Electrolocation for Underwater Target Localization

We explore the capabilities of a robotic sensing system designed to locate objects underwater through active movement of an electric field emitter and sensor apparatus. The system is inspired by the biological phenomenon of active electrolocation, a sensing strategy found in two groups of freshwater fishes known to emit weak electric fields for target localization and communication. An analytic...

متن کامل

Enhanced detection performance in electrosense through capacitive sensing.

Weakly electric fish emit an AC electric field into the water and use thousands of sensors on the skin to detect field perturbations due to surrounding objects. The fish's active electrosensory system allows them to navigate and hunt, using separate neural pathways and receptors for resistive and capacitive perturbations. We have previously developed a sensing method inspired by the weakly elec...

متن کامل

Biomimetic and bio-inspired robotics in electric fish research.

Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and b...

متن کامل

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

Analysis and design of object oriented is onemodern paradigms for developing a system. In this paradigm, there are several objects and each object plays some specific roles. Identifying objects (and classes) is one of the most important steps in the object-oriented paradigm. This paper makes a literature review over techniques to identify objects and then presents six taxonomies for them. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015