Improvement in B1+ Homogeneity and Average Flip Angle Using Dual-Source Parallel RF Excitation for Cardiac MRI in Swine Hearts
نویسندگان
چکیده
Cardiac MRI may benefit from increased polarization at high magnetic field strength of 3 Tesla but is challenged by increased field inhomogeneity. Initial human studies have shown that the radiofrequency (RF) excitation field (B1+) used for signal excitation in the heart is both inhomogeneous and significantly lower than desired, potentially leading to image artifacts and biased quantitative measures. Recently, multi-channel transmit systems have been introduced allowing localized patient specific RF shimming based on acquired calibration B1+ maps. Some prior human studies have shown lower than desired mean flip angles in the hearts of large patients even after RF shimming. Here, 100 cardiac B1+ map pairs before and after RF shimming were acquired in 55 swine. The mean flip angle and the coefficient of variation (CV) of the flip angle in the heart were determined before and after RF shimming. Mean flip angle, CV, and RF shim values (power ratio and phase difference between the two transmit channels) were tested for correlation with cross sectional body area and the Right-Left/Anterior-Posterior ratio. RF shimming significantly increased the mean flip angle in swine heart from 74.4±6.7% (mean ± standard deviation) to 94.7±4.8% of the desired flip angle and significantly reduced CV from 0.11±0.03 to 0.07±0.02 (p<<1e-10 for both). These results compare well with several previous human studies, except that the mean flip angle in the human heart only improved to 89% with RF shimming, possibly because the RF shimming routine does not consider safety constraints in very large patients. Additionally, mean flip angle decreased and CV increased with larger cross sectional body area, however, the RF shimming parameters did not correlate with cross sectional body area. RF shim power ratio correlated weakly with Right-Left/Anterior-Posterior ratio but phase difference did not, further substantiating the need for subject specific cardiac RF shimming.
منابع مشابه
Improvement in B1+-homogeneity of 3T cardiac MRI in swine with dual-source parallel RF excitation
Background Conventional MRI scanners up to a magnetic field strength of 3T use an integrated birdcage quadrature coil to generate a radio frequency (RF) excitation field (B1+). At 3T, Sung et al. observed a flip angle variation ranging from 31 to 66% over the entire left ventricle (LV) in humans as well as a flip-angle distribution from 34° to 63, for a nominal flip angle of 60°. This not only ...
متن کاملImpact of 3.0 T Cardiac MR Imaging Using Dual-Source Parallel Radiofrequency Transmission with Patient-Adaptive B1 Shimming
OBJECTIVES To prospectively evaluate the impact of 3.0 T Cardiac MR imaging using dual-source parallel radiofrequency (RF) transmission with patient-adaptive B1 shimming compared with single-source RF transmission in the RF homogeneity, image contrast and image quality. METHODS The study was approved by the local institutional review board, and all subjects provided written informed consent. ...
متن کاملAssessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences
Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged...
متن کاملThe impact of dual-source parallel radiofrequency transmission with patient-adaptive shimming on the cardiac magnetic resonance in children at 3.0 T
The cardiac magnetic resonance (CMR) of children at 3.0 T presents a unique set of technical challenges because of their small cardiac anatomical structures, fast heart rates, and the limited ability to keep motionless and hold breathe, which could cause problems associated with field inhomogeneity and degrade the image quality. The aim of our study was to evaluate the effect of dual-source par...
متن کاملEvaluation of a Subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T
BACKGROUND Radiofrequency (RF) shading artifacts degrade image quality while performing cardiovascular magnetic resonance (CMR) at higher field strengths. In this article, we sought to evaluate the effect of local RF (B1 field) shimming by using a dual-source-transmit RF system for cardiac cine imaging and to systematically evaluate the effect of subject body type on the B1 field with and witho...
متن کامل