Sequential Soil Transport and Its Influence on the Spatial Organisation of Collective Digging in Leaf-Cutting Ants
نویسندگان
چکیده
The Chaco leaf-cutting ant Atta vollenweideri (Forel) inhabits large and deep subterranean nests composed of a large number of fungus and refuse chambers. The ants dispose of the excavated soil by forming small pellets that are carried to the surface. For ants in general, the organisation of underground soil transport during nest building remains completely unknown. In the laboratory, we investigated how soil pellets are formed and transported, and whether their occurrence influences the spatial organisation of collective digging. Similar to leaf transport, we discovered size matching between soil pellet mass and carrier mass. Workers observed while digging excavated pellets at a rate of 26 per hour. Each excavator deposited its pellets in an individual cluster, independently of the preferred deposition sites of other excavators. Soil pellets were transported sequentially over 2 m, and the transport involved up to 12 workers belonging to three functionally distinct groups: excavators, several short-distance carriers that dropped the collected pellets after a few centimetres, and long-distance, last carriers that reached the final deposition site. When initiating a new excavation, the proportion of long-distance carriers increased from 18% to 45% within the first five hours, and remained unchanged over more than 20 hours. Accumulated, freshly-excavated pellets significantly influenced the workers' decision where to start digging in a choice experiment. Thus, pellets temporarily accumulated as a result of their sequential transport provide cues that spatially organise collective nest excavation.
منابع مشابه
Soil Moisture and Excavation Behaviour in the Chaco Leaf-Cutting Ant (Atta vollenweideri): Digging Performance and Prevention of Water Inflow into the Nest
The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colon...
متن کاملNest Enlargement in Leaf-Cutting Ants: Relocated Brood and Fungus Trigger the Excavation of New Chambers
During colony growth, leaf-cutting ants enlarge their nests by excavating tunnels and chambers housing their fungus gardens and brood. Workers are expected to excavate new nest chambers at locations across the soil profile that offer suitable environmental conditions for brood and fungus rearing. It is an open question whether new chambers are excavated in advance, or will emerge around brood o...
متن کاملThe determination of nest depth in founding queens of leaf-cutting ants (Atta vollenweideri): idiothetic and temporal control.
Leaf-cutting ant queens excavate a founding nest consisting of a vertical tunnel and a final horizontal chamber. Nest foundation is very time consuming, and colony success depends on the excavated depth. Although shallow nests may be energetically cheaper to dig, queens may be more exposed to the changing environment. Deeper chambers, in contrast, may be climatically more stable, but are more e...
متن کاملSocial life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants.
Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmen...
متن کاملCarbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus
Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen) and hypercapni...
متن کامل