Quaternions and Rotations *
نویسنده
چکیده
Up until now we have learned that a rotation in R3 about an axis through the origin can be represented by a 3×3 orthogonal matrix with determinant 1. However, the matrix representation seems redundant because only four of its nine elements are independent. Also the geometric interpretation of such a matrix is not clear until we carry out several steps of calculation to extract the rotation axis and angle. Furthermore, to compose two rotations, we need to compute the product of the two corresponding matrices, which requires twenty-seven multiplications and eighteen additions. Quaternions are very efficient for analyzing situations where rotations in R3 are involved. A quaternion is a 4-tuple, which is a more concise representation than a rotation matrix. Its geometric meaning is also more obvious as the rotation axis and angle can be trivially recovered. The quaternion algebra to be introduced will also allow us to easily compose rotations. This is because quaternion composition takes merely sixteen multiplications and twelve additions. The development of quaternions is attributed to W. R. Hamilton [5] in 1843. Legend has it that Hamilton was walking with his wife Helen at the Royal Irish Academy when he was suddenly struck by the idea of adding a fourth dimension in order to multiply triples. Excited by this breakthrough, as the couple passed the Broome Bridge of the Royal Canal, he carved the newfound quaternion equations
منابع مشابه
Dual Quaternion
As we know, quaternions are very efficient for representing rotations with clear geometric meaning (rotation axis and angle) and only one redundancy. Unfortunately, they do not handle translations, which meanwhile can be made multiplicative along with rotations via the use of homogeneous coordinates. Despite also being 4-tuples, homogeneous coordinates are algebraically incompatible with quater...
متن کاملReal Time Skeletal Animation with Dual Quaternion
Though Combination of Quaternions and matrix has been a popular tool in skeletal animation for more than 20 years, classical quaternions are restricted to the representation of rotations. In skeletal animation and many other applications of 3D computer graphics, we actually deal with rigid transformation including both rotation and translation. Dual quaternions represent rigid transformations n...
متن کاملQuaternions in molecular modeling.
Quaternions are an important tool to describe the orientation of a molecule. This paper considers the use of quaternions in matching two conformations of a molecule, in interpolating rotations, in performing statistics on orientational data, in the random sampling of rotations, and in establishing grids in orientation space. These examples show that many of the rotational problems that arise in...
متن کاملDual Quaternions for Rigid Transformation Blending
Quaternions have been a popular tool in 3D computer graphics for more than 20 years. However, classical quaternions are restricted to the representation of rotations, whereas in graphical applications we typically work with rotation composed with translation (i.e., a rigid transformation). Dual quaternions represent rigid transformations in the same way as classical quaternions represent rotati...
متن کاملA Beginners Guide to Dual-Quaternions
In this paper, we give a beginners guide to the practicality of using dual-quaternions to represent the rotations and translations in character-based hierarchies. Quaternions have proven themselves in many fields of science and computing as providing an unambiguous, un-cumbersome, computationally efficient method of representing rotational information. We hope after reading this paper the reade...
متن کاملDual Quaternion Blending Algorithm and Its Application in Character Animation
In this paper we generalize established techniques and blending algorithm for quaternions to dual quaternions to represent rigid transformations compactly. With the visualization of OpenGL, we employ dual quaternions to achieve character animation in real time. Classical quaternions are only able to characterize rotations although combination of matrix calculation and quaternions operator has b...
متن کامل