Existence of Multiple Periodic Orbits on Star-Shaped Hamiltonian Surfaces

نویسندگان

  • HENRI BERESTYCKI
  • GIOVANNI MANCINI
چکیده

Consider the Hamiltonian system i = 1 , . . . , N. Here, H E C2(R2N, R). In this paper, we investigate the existence of periodic orbits of (HS) on a given energy surface X = { z E W Z N ; H ( z) = c} ( c > 0 is a constant). The surface I: is required to verify certain geometric assumptions: B bounds a star-shaped compact region B and u 8 c B c pS for some ellipsoid %‘c RZN, 0 < (Y < p. We exhibit a constant S > 0 (depending in an explicit fashion on the lengths of the main axes of Lf and one other geometrical parameter of I) such that if furthermore p2 /a2< I + 8, then (HS) has at least N distinct geometric orbits on P. This result is shown to extend and unify several earlier works on this subject (among them works by Weinstein, Rabinowitz, Ekeland-Lasry and Ekeland). In proving this result we construct index theories for an S’-action, from which we derive abstract critical point theorems for S’-invariant functionals. We also derive an estimate for the minimal period of solutions to differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generic Existence of Periodic Orbits in Hamiltonian Dynamics

We prove several generic existence results for infinitely many periodic orbits of Hamiltonian diffeomorphisms or Reeb flows. For instance, we show that a Hamiltonian diffeomorphism of a complex projective space or Grassmannian generically has infinitely many periodic orbits. We also consider symplectomorphisms of the two-torus with irrational flux. We show that such a symplectomorphism necessar...

متن کامل

The Hamiltonian Seifert Conjecture: Examples and Open Problems

Hamiltonian dynamical systems tend to have infinitely many periodic orbits. For example, for a broad class of symplectic manifolds almost all levels of a proper smooth Hamiltonian carry periodic orbits. The Hamiltonian Seifert conjecture is the existence problem for regular compact energy levels without periodic orbits. Very little is known about how large the set of regular energy values witho...

متن کامل

Periodic Orbits of Hamiltonian Systems: Applications to Perturbed Kepler Problems

We provide for a class of Hamiltonian systems in the action– angle variables sufficient conditions for showing the existence of periodic orbits. We expand this result to the study of the existence of periodic orbits of perturbed spatial Keplerian Hamiltonians with axial symmetry. Finally, we apply these general results for finding periodic orbits of the Matese– Whitman Hamiltonian, of the spati...

متن کامل

Relative Hofer–zehnder Capacity and Periodic Orbits in Twisted Cotangent Bundles

The main theme of this paper is a relative version of the almost existence theorem for periodic orbits of autonomous Hamiltonian systems. We show that almost all low levels of a function on a geometrically bounded symplectically aspherical manifold carry contractible periodic orbits of the Hamiltonian flow, provided that the function attains its minimum along a closed symplectic submanifold. As...

متن کامل

Existence of Relative Periodic Orbits near Relative Equilibria

We show existence of relative periodic orbits (a.k.a. relative nonlinear normal modes) near relative equilibria of a symmetric Hamiltonian system under an appropriate assumption on the Hessian of the Hamiltonian. This gives a relative version of the Moser-Weinstein theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006